LMS adaptive filter with optimum step-size for tracking time-varying channels

In this paper, an adaptive step-size LMS algorithm for tracking time-varying channels is presented. It is well known that in the case of such channels, the output steady-state mean square error (MSB) is a nonlinear function of the algorithm step-size and so, an optimum step-size that minimize the MS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bilcu, R.C., Kuosmanen, P., Egiazarian, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 887 Vol.2
container_issue
container_start_page 883
container_title
container_volume 2
creator Bilcu, R.C.
Kuosmanen, P.
Egiazarian, K.
description In this paper, an adaptive step-size LMS algorithm for tracking time-varying channels is presented. It is well known that in the case of such channels, the output steady-state mean square error (MSB) is a nonlinear function of the algorithm step-size and so, an optimum step-size that minimize the MSE exist. Here we propose an algorithm which adaptively adjust the step-size of the LMS toward its optimum value, such that the steady-state MSE is minimized. The nonlinear relation between the steady-state MSE and the step-size is parametrized such that, during the adaptation, estimates of the optimum step-size are easily obtained. These estimates are obtained independent from the channel statistical parameters, therefore, no prior information about the channel parameters is needed.
doi_str_mv 10.1109/ISPA.2003.1296403
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1296403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1296403</ieee_id><sourcerecordid>1296403</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-b0c65339fbf2b754be1a4886fce9a61d5288e8478a870f2bd20e5b2ba8ca1d803</originalsourceid><addsrcrecordid>eNotT9tKw0AUXBBBrf0A8WV_IPHsLdl9LMVLIUWhCr6V3eTEriZpyK4V_XpX7LwMZ2YYzhByxSBnDMzNavO0yDmAyBk3hQRxQi6MEkxLKNjrGZmH8A4JwkgDcE7W1XpDbWPH6A9IW99FnOiXjzu6T1L_2dMQccyC_0nufqJxsvWHH95oMjE72On776h3dhiwC5fktLVdwPmRZ-Tl7vZ5-ZBVj_er5aLKPAMVMwd1oYQwrWu5K5V0yKzUumhrNLZgjeJao5altrqEFGk4oHLcWV1b1mgQM3L93-sRcTtOvk-PbI-LxS-YG00b</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>LMS adaptive filter with optimum step-size for tracking time-varying channels</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bilcu, R.C. ; Kuosmanen, P. ; Egiazarian, K.</creator><creatorcontrib>Bilcu, R.C. ; Kuosmanen, P. ; Egiazarian, K.</creatorcontrib><description>In this paper, an adaptive step-size LMS algorithm for tracking time-varying channels is presented. It is well known that in the case of such channels, the output steady-state mean square error (MSB) is a nonlinear function of the algorithm step-size and so, an optimum step-size that minimize the MSE exist. Here we propose an algorithm which adaptively adjust the step-size of the LMS toward its optimum value, such that the steady-state MSE is minimized. The nonlinear relation between the steady-state MSE and the step-size is parametrized such that, during the adaptation, estimates of the optimum step-size are easily obtained. These estimates are obtained independent from the channel statistical parameters, therefore, no prior information about the channel parameters is needed.</description><identifier>ISBN: 953184061X</identifier><identifier>ISBN: 9789531840613</identifier><identifier>DOI: 10.1109/ISPA.2003.1296403</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive algorithm ; Adaptive filters ; Adaptive signal processing ; Convergence ; Filtering algorithms ; Iterative algorithms ; Least squares approximation ; Signal processing algorithms ; Steady-state ; Time-varying channels</subject><ispartof>3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the, 2003, Vol.2, p.883-887 Vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1296403$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1296403$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bilcu, R.C.</creatorcontrib><creatorcontrib>Kuosmanen, P.</creatorcontrib><creatorcontrib>Egiazarian, K.</creatorcontrib><title>LMS adaptive filter with optimum step-size for tracking time-varying channels</title><title>3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the</title><addtitle>ISPA</addtitle><description>In this paper, an adaptive step-size LMS algorithm for tracking time-varying channels is presented. It is well known that in the case of such channels, the output steady-state mean square error (MSB) is a nonlinear function of the algorithm step-size and so, an optimum step-size that minimize the MSE exist. Here we propose an algorithm which adaptively adjust the step-size of the LMS toward its optimum value, such that the steady-state MSE is minimized. The nonlinear relation between the steady-state MSE and the step-size is parametrized such that, during the adaptation, estimates of the optimum step-size are easily obtained. These estimates are obtained independent from the channel statistical parameters, therefore, no prior information about the channel parameters is needed.</description><subject>Adaptive algorithm</subject><subject>Adaptive filters</subject><subject>Adaptive signal processing</subject><subject>Convergence</subject><subject>Filtering algorithms</subject><subject>Iterative algorithms</subject><subject>Least squares approximation</subject><subject>Signal processing algorithms</subject><subject>Steady-state</subject><subject>Time-varying channels</subject><isbn>953184061X</isbn><isbn>9789531840613</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT9tKw0AUXBBBrf0A8WV_IPHsLdl9LMVLIUWhCr6V3eTEriZpyK4V_XpX7LwMZ2YYzhByxSBnDMzNavO0yDmAyBk3hQRxQi6MEkxLKNjrGZmH8A4JwkgDcE7W1XpDbWPH6A9IW99FnOiXjzu6T1L_2dMQccyC_0nufqJxsvWHH95oMjE72On776h3dhiwC5fktLVdwPmRZ-Tl7vZ5-ZBVj_er5aLKPAMVMwd1oYQwrWu5K5V0yKzUumhrNLZgjeJao5altrqEFGk4oHLcWV1b1mgQM3L93-sRcTtOvk-PbI-LxS-YG00b</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Bilcu, R.C.</creator><creator>Kuosmanen, P.</creator><creator>Egiazarian, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>LMS adaptive filter with optimum step-size for tracking time-varying channels</title><author>Bilcu, R.C. ; Kuosmanen, P. ; Egiazarian, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-b0c65339fbf2b754be1a4886fce9a61d5288e8478a870f2bd20e5b2ba8ca1d803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive filters</topic><topic>Adaptive signal processing</topic><topic>Convergence</topic><topic>Filtering algorithms</topic><topic>Iterative algorithms</topic><topic>Least squares approximation</topic><topic>Signal processing algorithms</topic><topic>Steady-state</topic><topic>Time-varying channels</topic><toplevel>online_resources</toplevel><creatorcontrib>Bilcu, R.C.</creatorcontrib><creatorcontrib>Kuosmanen, P.</creatorcontrib><creatorcontrib>Egiazarian, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bilcu, R.C.</au><au>Kuosmanen, P.</au><au>Egiazarian, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>LMS adaptive filter with optimum step-size for tracking time-varying channels</atitle><btitle>3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the</btitle><stitle>ISPA</stitle><date>2003</date><risdate>2003</risdate><volume>2</volume><spage>883</spage><epage>887 Vol.2</epage><pages>883-887 Vol.2</pages><isbn>953184061X</isbn><isbn>9789531840613</isbn><abstract>In this paper, an adaptive step-size LMS algorithm for tracking time-varying channels is presented. It is well known that in the case of such channels, the output steady-state mean square error (MSB) is a nonlinear function of the algorithm step-size and so, an optimum step-size that minimize the MSE exist. Here we propose an algorithm which adaptively adjust the step-size of the LMS toward its optimum value, such that the steady-state MSE is minimized. The nonlinear relation between the steady-state MSE and the step-size is parametrized such that, during the adaptation, estimates of the optimum step-size are easily obtained. These estimates are obtained independent from the channel statistical parameters, therefore, no prior information about the channel parameters is needed.</abstract><pub>IEEE</pub><doi>10.1109/ISPA.2003.1296403</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 953184061X
ispartof 3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the, 2003, Vol.2, p.883-887 Vol.2
issn
language eng
recordid cdi_ieee_primary_1296403
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive algorithm
Adaptive filters
Adaptive signal processing
Convergence
Filtering algorithms
Iterative algorithms
Least squares approximation
Signal processing algorithms
Steady-state
Time-varying channels
title LMS adaptive filter with optimum step-size for tracking time-varying channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=LMS%20adaptive%20filter%20with%20optimum%20step-size%20for%20tracking%20time-varying%20channels&rft.btitle=3rd%20International%20Symposium%20on%20Image%20and%20Signal%20Processing%20and%20Analysis,%202003.%20ISPA%202003.%20Proceedings%20of%20the&rft.au=Bilcu,%20R.C.&rft.date=2003&rft.volume=2&rft.spage=883&rft.epage=887%20Vol.2&rft.pages=883-887%20Vol.2&rft.isbn=953184061X&rft.isbn_list=9789531840613&rft_id=info:doi/10.1109/ISPA.2003.1296403&rft_dat=%3Cieee_6IE%3E1296403%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1296403&rfr_iscdi=true