Hyperspectral soil texture classification

A soil texture classification system is developed and exploited in the hyperspectral domain. The hyperspectral signatures of three different pure soil textures, i.e., sand, silt and clay, combined with a linear mixture model, are used to generate signals representing different types of soil textures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xudong Zhang, Vijayaraj, V., Younan, N.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue
container_start_page 182
container_title
container_volume
creator Xudong Zhang
Vijayaraj, V.
Younan, N.H.
description A soil texture classification system is developed and exploited in the hyperspectral domain. The hyperspectral signatures of three different pure soil textures, i.e., sand, silt and clay, combined with a linear mixture model, are used to generate signals representing different types of soil textures. Feature extraction via the discrete wavelet transform and linear discriminant analysis for feature vector reduction and optimization are used. Different types of classifiers, which include the nearest mean and maximum likelihood, are incorporated to test the system's applicability. Classification accuracy is evaluated using a leave-one-out method. Experimental results are presented and possible future works are discussed.
doi_str_mv 10.1109/WARSD.2003.1295191
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1295191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1295191</ieee_id><sourcerecordid>1295191</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-40b198951f93c137767d7faf82620dfcc5e676b8a5aaddecc27072ab5ab076403</originalsourceid><addsrcrecordid>eNotj0tLAzEURgMiqLV_QDezdTHjTW6TmyxLfVQoCD5wWe5kEoiMdkgi2H9vwX6bszuHT4grCZ2U4G4_li-vd50CwE4qp6WTJ-ICyAJa1GDPxLyUTzgMHWpU5-JmvZ9CLlPwNfPYlF0amxp-608OjR-5lBST55p235fiNPJYwvzImXh_uH9brdvN8-PTarlpkyRd2wX00tlDOjr0EokMDRQ5WmUUDNF7HQyZ3rJmHobgvSIgxb3mHsgsAGfi-t-bQgjbKacvzvvt8Q3-AVvQQFA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hyperspectral soil texture classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xudong Zhang ; Vijayaraj, V. ; Younan, N.H.</creator><creatorcontrib>Xudong Zhang ; Vijayaraj, V. ; Younan, N.H.</creatorcontrib><description>A soil texture classification system is developed and exploited in the hyperspectral domain. The hyperspectral signatures of three different pure soil textures, i.e., sand, silt and clay, combined with a linear mixture model, are used to generate signals representing different types of soil textures. Feature extraction via the discrete wavelet transform and linear discriminant analysis for feature vector reduction and optimization are used. Different types of classifiers, which include the nearest mean and maximum likelihood, are incorporated to test the system's applicability. Classification accuracy is evaluated using a leave-one-out method. Experimental results are presented and possible future works are discussed.</description><identifier>ISBN: 0780383508</identifier><identifier>ISBN: 9780780383500</identifier><identifier>DOI: 10.1109/WARSD.2003.1295191</identifier><language>eng</language><publisher>IEEE</publisher><subject>Discrete wavelet transforms ; Feature extraction ; Hyperspectral imaging ; Hyperspectral sensors ; Linear discriminant analysis ; Sensor phenomena and characterization ; Signal generators ; Soil texture ; Vectors ; Wavelet analysis</subject><ispartof>IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003, 2003, p.182-186</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1295191$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1295191$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xudong Zhang</creatorcontrib><creatorcontrib>Vijayaraj, V.</creatorcontrib><creatorcontrib>Younan, N.H.</creatorcontrib><title>Hyperspectral soil texture classification</title><title>IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003</title><addtitle>WARSD</addtitle><description>A soil texture classification system is developed and exploited in the hyperspectral domain. The hyperspectral signatures of three different pure soil textures, i.e., sand, silt and clay, combined with a linear mixture model, are used to generate signals representing different types of soil textures. Feature extraction via the discrete wavelet transform and linear discriminant analysis for feature vector reduction and optimization are used. Different types of classifiers, which include the nearest mean and maximum likelihood, are incorporated to test the system's applicability. Classification accuracy is evaluated using a leave-one-out method. Experimental results are presented and possible future works are discussed.</description><subject>Discrete wavelet transforms</subject><subject>Feature extraction</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Linear discriminant analysis</subject><subject>Sensor phenomena and characterization</subject><subject>Signal generators</subject><subject>Soil texture</subject><subject>Vectors</subject><subject>Wavelet analysis</subject><isbn>0780383508</isbn><isbn>9780780383500</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLAzEURgMiqLV_QDezdTHjTW6TmyxLfVQoCD5wWe5kEoiMdkgi2H9vwX6bszuHT4grCZ2U4G4_li-vd50CwE4qp6WTJ-ICyAJa1GDPxLyUTzgMHWpU5-JmvZ9CLlPwNfPYlF0amxp-608OjR-5lBST55p235fiNPJYwvzImXh_uH9brdvN8-PTarlpkyRd2wX00tlDOjr0EokMDRQ5WmUUDNF7HQyZ3rJmHobgvSIgxb3mHsgsAGfi-t-bQgjbKacvzvvt8Q3-AVvQQFA</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Xudong Zhang</creator><creator>Vijayaraj, V.</creator><creator>Younan, N.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Hyperspectral soil texture classification</title><author>Xudong Zhang ; Vijayaraj, V. ; Younan, N.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-40b198951f93c137767d7faf82620dfcc5e676b8a5aaddecc27072ab5ab076403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Discrete wavelet transforms</topic><topic>Feature extraction</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Linear discriminant analysis</topic><topic>Sensor phenomena and characterization</topic><topic>Signal generators</topic><topic>Soil texture</topic><topic>Vectors</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Xudong Zhang</creatorcontrib><creatorcontrib>Vijayaraj, V.</creatorcontrib><creatorcontrib>Younan, N.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xudong Zhang</au><au>Vijayaraj, V.</au><au>Younan, N.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hyperspectral soil texture classification</atitle><btitle>IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003</btitle><stitle>WARSD</stitle><date>2003</date><risdate>2003</risdate><spage>182</spage><epage>186</epage><pages>182-186</pages><isbn>0780383508</isbn><isbn>9780780383500</isbn><abstract>A soil texture classification system is developed and exploited in the hyperspectral domain. The hyperspectral signatures of three different pure soil textures, i.e., sand, silt and clay, combined with a linear mixture model, are used to generate signals representing different types of soil textures. Feature extraction via the discrete wavelet transform and linear discriminant analysis for feature vector reduction and optimization are used. Different types of classifiers, which include the nearest mean and maximum likelihood, are incorporated to test the system's applicability. Classification accuracy is evaluated using a leave-one-out method. Experimental results are presented and possible future works are discussed.</abstract><pub>IEEE</pub><doi>10.1109/WARSD.2003.1295191</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780383508
ispartof IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003, 2003, p.182-186
issn
language eng
recordid cdi_ieee_primary_1295191
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Discrete wavelet transforms
Feature extraction
Hyperspectral imaging
Hyperspectral sensors
Linear discriminant analysis
Sensor phenomena and characterization
Signal generators
Soil texture
Vectors
Wavelet analysis
title Hyperspectral soil texture classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hyperspectral%20soil%20texture%20classification&rft.btitle=IEEE%20Workshop%20on%20Advances%20in%20Techniques%20for%20Analysis%20of%20Remotely%20Sensed%20Data,%202003&rft.au=Xudong%20Zhang&rft.date=2003&rft.spage=182&rft.epage=186&rft.pages=182-186&rft.isbn=0780383508&rft.isbn_list=9780780383500&rft_id=info:doi/10.1109/WARSD.2003.1295191&rft_dat=%3Cieee_6IE%3E1295191%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1295191&rfr_iscdi=true