Optimal coordinated voltage control for power system voltage stability

An optimal coordinated voltage controller (OCVC) is developed based on the spirit of model predictive control (MPC) method. The OCVC consists of three components, namely a predictor, a control candidate pool, and a selector. It has been used in secondary voltage control (SVC) to coordinate dissimila...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2004-05, Vol.19 (2), p.1115-1122
Hauptverfasser: Wen, J.Y., Wu, Q.H., Turner, D.R., Cheng, S.J., Fitch, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1122
container_issue 2
container_start_page 1115
container_title IEEE transactions on power systems
container_volume 19
creator Wen, J.Y.
Wu, Q.H.
Turner, D.R.
Cheng, S.J.
Fitch, J.
description An optimal coordinated voltage controller (OCVC) is developed based on the spirit of model predictive control (MPC) method. The OCVC consists of three components, namely a predictor, a control candidate pool, and a selector. It has been used in secondary voltage control (SVC) to coordinate dissimilar control actions at different geographical locations in order to maintain desired voltage profiles in a global sense in emergencies. A single-stage Euler state predictor (SESP) is utilized, based on the system model, to predict voltage performance under selected control actions; the selection of the optimum control action from the pool is a complex optimization problem that is achieved by a pseudogradient evolutionary programming (PGEP) technique. Simulation results on a six-bus benchmark system and the New England 10-generator-39-bus system are given to show the potential of this method for online usage.
doi_str_mv 10.1109/TPWRS.2004.825897
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1295023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1295023</ieee_id><sourcerecordid>896212193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-203bc15bd64bd29d2eb2c05d148d29120d6704a97d649914892ce4d7a44f34303</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQQBdRsFZ_gHgJHvSUOvuV7B6lWBUKFa14XJLsRlLSbNzdKv33bo0oePA0zMybgZmH0CmGCcYgr5YPL49PEwLAJoJwIfM9NMKcixSyXO6jEQjBUyE5HKIj71cAkMXGCM0WfWjWRZtU1jrddEUwOnm3bSheTax1wdk2qa1LevthXOK3Ppj1D-BDUTZtE7bH6KAuWm9OvuMYPc9ultO7dL64vZ9ez9OKchpSArSsMC91xkpNpCamJBVwjZmIKSagsxxYIfMISBmrklSG6bxgrKaMAh2jy2Fv7-zbxvig1o2vTNsWnbEbr4TMCCZY0khe_EsSwbHMBI7g-R9wZTeui1coIajgjEMeITxAlbPeO1Or3sW3ua3CoHYC1JcAtROgBgFx5myYaYwxvzyJEgiln5lUgUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883854507</pqid></control><display><type>article</type><title>Optimal coordinated voltage control for power system voltage stability</title><source>IEEE Electronic Library (IEL)</source><creator>Wen, J.Y. ; Wu, Q.H. ; Turner, D.R. ; Cheng, S.J. ; Fitch, J.</creator><creatorcontrib>Wen, J.Y. ; Wu, Q.H. ; Turner, D.R. ; Cheng, S.J. ; Fitch, J.</creatorcontrib><description>An optimal coordinated voltage controller (OCVC) is developed based on the spirit of model predictive control (MPC) method. The OCVC consists of three components, namely a predictor, a control candidate pool, and a selector. It has been used in secondary voltage control (SVC) to coordinate dissimilar control actions at different geographical locations in order to maintain desired voltage profiles in a global sense in emergencies. A single-stage Euler state predictor (SESP) is utilized, based on the system model, to predict voltage performance under selected control actions; the selection of the optimum control action from the pool is a complex optimization problem that is achieved by a pseudogradient evolutionary programming (PGEP) technique. Simulation results on a six-bus benchmark system and the New England 10-generator-39-bus system are given to show the potential of this method for online usage.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2004.825897</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems ; Electric potential ; Emergencies ; Genetic programming ; Mathematical models ; Optimal control ; Optimization ; Pools ; Power system control ; Power system modeling ; Power system stability ; Power systems ; Predictive control ; Predictive models ; Selectors ; Static VAr compensators ; Voltage ; Voltage control</subject><ispartof>IEEE transactions on power systems, 2004-05, Vol.19 (2), p.1115-1122</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-203bc15bd64bd29d2eb2c05d148d29120d6704a97d649914892ce4d7a44f34303</citedby><cites>FETCH-LOGICAL-c353t-203bc15bd64bd29d2eb2c05d148d29120d6704a97d649914892ce4d7a44f34303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1295023$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1295023$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wen, J.Y.</creatorcontrib><creatorcontrib>Wu, Q.H.</creatorcontrib><creatorcontrib>Turner, D.R.</creatorcontrib><creatorcontrib>Cheng, S.J.</creatorcontrib><creatorcontrib>Fitch, J.</creatorcontrib><title>Optimal coordinated voltage control for power system voltage stability</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>An optimal coordinated voltage controller (OCVC) is developed based on the spirit of model predictive control (MPC) method. The OCVC consists of three components, namely a predictor, a control candidate pool, and a selector. It has been used in secondary voltage control (SVC) to coordinate dissimilar control actions at different geographical locations in order to maintain desired voltage profiles in a global sense in emergencies. A single-stage Euler state predictor (SESP) is utilized, based on the system model, to predict voltage performance under selected control actions; the selection of the optimum control action from the pool is a complex optimization problem that is achieved by a pseudogradient evolutionary programming (PGEP) technique. Simulation results on a six-bus benchmark system and the New England 10-generator-39-bus system are given to show the potential of this method for online usage.</description><subject>Control systems</subject><subject>Electric potential</subject><subject>Emergencies</subject><subject>Genetic programming</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Pools</subject><subject>Power system control</subject><subject>Power system modeling</subject><subject>Power system stability</subject><subject>Power systems</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Selectors</subject><subject>Static VAr compensators</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1Lw0AQQBdRsFZ_gHgJHvSUOvuV7B6lWBUKFa14XJLsRlLSbNzdKv33bo0oePA0zMybgZmH0CmGCcYgr5YPL49PEwLAJoJwIfM9NMKcixSyXO6jEQjBUyE5HKIj71cAkMXGCM0WfWjWRZtU1jrddEUwOnm3bSheTax1wdk2qa1LevthXOK3Ppj1D-BDUTZtE7bH6KAuWm9OvuMYPc9ultO7dL64vZ9ez9OKchpSArSsMC91xkpNpCamJBVwjZmIKSagsxxYIfMISBmrklSG6bxgrKaMAh2jy2Fv7-zbxvig1o2vTNsWnbEbr4TMCCZY0khe_EsSwbHMBI7g-R9wZTeui1coIajgjEMeITxAlbPeO1Or3sW3ua3CoHYC1JcAtROgBgFx5myYaYwxvzyJEgiln5lUgUM</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Wen, J.Y.</creator><creator>Wu, Q.H.</creator><creator>Turner, D.R.</creator><creator>Cheng, S.J.</creator><creator>Fitch, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20040501</creationdate><title>Optimal coordinated voltage control for power system voltage stability</title><author>Wen, J.Y. ; Wu, Q.H. ; Turner, D.R. ; Cheng, S.J. ; Fitch, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-203bc15bd64bd29d2eb2c05d148d29120d6704a97d649914892ce4d7a44f34303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Control systems</topic><topic>Electric potential</topic><topic>Emergencies</topic><topic>Genetic programming</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Pools</topic><topic>Power system control</topic><topic>Power system modeling</topic><topic>Power system stability</topic><topic>Power systems</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Selectors</topic><topic>Static VAr compensators</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, J.Y.</creatorcontrib><creatorcontrib>Wu, Q.H.</creatorcontrib><creatorcontrib>Turner, D.R.</creatorcontrib><creatorcontrib>Cheng, S.J.</creatorcontrib><creatorcontrib>Fitch, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen, J.Y.</au><au>Wu, Q.H.</au><au>Turner, D.R.</au><au>Cheng, S.J.</au><au>Fitch, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal coordinated voltage control for power system voltage stability</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2004-05-01</date><risdate>2004</risdate><volume>19</volume><issue>2</issue><spage>1115</spage><epage>1122</epage><pages>1115-1122</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>An optimal coordinated voltage controller (OCVC) is developed based on the spirit of model predictive control (MPC) method. The OCVC consists of three components, namely a predictor, a control candidate pool, and a selector. It has been used in secondary voltage control (SVC) to coordinate dissimilar control actions at different geographical locations in order to maintain desired voltage profiles in a global sense in emergencies. A single-stage Euler state predictor (SESP) is utilized, based on the system model, to predict voltage performance under selected control actions; the selection of the optimum control action from the pool is a complex optimization problem that is achieved by a pseudogradient evolutionary programming (PGEP) technique. Simulation results on a six-bus benchmark system and the New England 10-generator-39-bus system are given to show the potential of this method for online usage.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2004.825897</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2004-05, Vol.19 (2), p.1115-1122
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_1295023
source IEEE Electronic Library (IEL)
subjects Control systems
Electric potential
Emergencies
Genetic programming
Mathematical models
Optimal control
Optimization
Pools
Power system control
Power system modeling
Power system stability
Power systems
Predictive control
Predictive models
Selectors
Static VAr compensators
Voltage
Voltage control
title Optimal coordinated voltage control for power system voltage stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20coordinated%20voltage%20control%20for%20power%20system%20voltage%20stability&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Wen,%20J.Y.&rft.date=2004-05-01&rft.volume=19&rft.issue=2&rft.spage=1115&rft.epage=1122&rft.pages=1115-1122&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2004.825897&rft_dat=%3Cproquest_RIE%3E896212193%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883854507&rft_id=info:pmid/&rft_ieee_id=1295023&rfr_iscdi=true