Liquid drop photonic signal analysis using fast learning artificial neural networks

This paper presents a treatment on data obtained from a liquid drop photonic signal analyzer. The liquid drop analyzer extracts liquid features from different types of liquid drops and obtains a spectrum of characteristics. The data is then clustered using the K-means fast learning artificial neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ping, W.L., Jian, X., Phuan, A.T.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022 vol.2
container_issue
container_start_page 1018
container_title
container_volume 2
creator Ping, W.L.
Jian, X.
Phuan, A.T.L.
description This paper presents a treatment on data obtained from a liquid drop photonic signal analyzer. The liquid drop analyzer extracts liquid features from different types of liquid drops and obtains a spectrum of characteristics. The data is then clustered using the K-means fast learning artificial neural network (K-FLANN) that implements a systematic reshuffling of the input data points to achieve consistent clustering, regardless of the data input sequence. An introduction of the K-FLANN network is presented in this paper as it is rarely encountered. The discussions explains how the K-FLANN stabilizes the cluster formations such that the resultant cluster centroids remain relatively consistent even though the clustering is done on data presented in a different sequence. The experimental results have a dual agenda. Firstly it shows that the liquid drop photonic data is a viable method of discriminating between liquids and secondly the K-FLANN is resilient changes in data presentation sequences and preserves the clustering consistencies.
doi_str_mv 10.1109/ICICS.2003.1292613
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1292613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1292613</ieee_id><sourcerecordid>1292613</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-24b92c3cf14eca48c2dc345cb0295fb0e486ebb4d3d5678e508b4b8aa59be4233</originalsourceid><addsrcrecordid>eNotj9tKxDAYhAMiqOu-gN7kBVpzbJNLKR4KC16sXi9J-nf9tbY1aZF9e-u6czEfA8PAEHLDWc45s3d1VVfbXDAmcy6sKLg8I1esNEwabrS5IOuUPtgiabUQ9pJsN_g9Y0ObOIx0fB-mocdAE-5711G32CFhonPCfk9blybagYv9X3JxwhYDLr0e5njE9DPEz3RNzlvXJVifuCJvjw-v1XO2eXmqq_tNhrzUUyaUtyLI0HIFwSkTRBOk0sEzYXXrGShTgPeqkY0uSgOaGa-8cU5bD0pIuSK3_7sIALsx4peLh93pt_wFbrVQRw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Liquid drop photonic signal analysis using fast learning artificial neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ping, W.L. ; Jian, X. ; Phuan, A.T.L.</creator><creatorcontrib>Ping, W.L. ; Jian, X. ; Phuan, A.T.L.</creatorcontrib><description>This paper presents a treatment on data obtained from a liquid drop photonic signal analyzer. The liquid drop analyzer extracts liquid features from different types of liquid drops and obtains a spectrum of characteristics. The data is then clustered using the K-means fast learning artificial neural network (K-FLANN) that implements a systematic reshuffling of the input data points to achieve consistent clustering, regardless of the data input sequence. An introduction of the K-FLANN network is presented in this paper as it is rarely encountered. The discussions explains how the K-FLANN stabilizes the cluster formations such that the resultant cluster centroids remain relatively consistent even though the clustering is done on data presented in a different sequence. The experimental results have a dual agenda. Firstly it shows that the liquid drop photonic data is a viable method of discriminating between liquids and secondly the K-FLANN is resilient changes in data presentation sequences and preserves the clustering consistencies.</description><identifier>ISBN: 0780381858</identifier><identifier>ISBN: 9780780381858</identifier><identifier>DOI: 10.1109/ICICS.2003.1292613</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Capacitors ; Data mining ; Feature extraction ; Linear discriminant analysis ; Liquids ; Optical refraction ; Photonics ; Signal analysis ; Welding</subject><ispartof>Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, 2003, Vol.2, p.1018-1022 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1292613$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1292613$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ping, W.L.</creatorcontrib><creatorcontrib>Jian, X.</creatorcontrib><creatorcontrib>Phuan, A.T.L.</creatorcontrib><title>Liquid drop photonic signal analysis using fast learning artificial neural networks</title><title>Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint</title><addtitle>ICICS</addtitle><description>This paper presents a treatment on data obtained from a liquid drop photonic signal analyzer. The liquid drop analyzer extracts liquid features from different types of liquid drops and obtains a spectrum of characteristics. The data is then clustered using the K-means fast learning artificial neural network (K-FLANN) that implements a systematic reshuffling of the input data points to achieve consistent clustering, regardless of the data input sequence. An introduction of the K-FLANN network is presented in this paper as it is rarely encountered. The discussions explains how the K-FLANN stabilizes the cluster formations such that the resultant cluster centroids remain relatively consistent even though the clustering is done on data presented in a different sequence. The experimental results have a dual agenda. Firstly it shows that the liquid drop photonic data is a viable method of discriminating between liquids and secondly the K-FLANN is resilient changes in data presentation sequences and preserves the clustering consistencies.</description><subject>Artificial neural networks</subject><subject>Capacitors</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Linear discriminant analysis</subject><subject>Liquids</subject><subject>Optical refraction</subject><subject>Photonics</subject><subject>Signal analysis</subject><subject>Welding</subject><isbn>0780381858</isbn><isbn>9780780381858</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj9tKxDAYhAMiqOu-gN7kBVpzbJNLKR4KC16sXi9J-nf9tbY1aZF9e-u6czEfA8PAEHLDWc45s3d1VVfbXDAmcy6sKLg8I1esNEwabrS5IOuUPtgiabUQ9pJsN_g9Y0ObOIx0fB-mocdAE-5711G32CFhonPCfk9blybagYv9X3JxwhYDLr0e5njE9DPEz3RNzlvXJVifuCJvjw-v1XO2eXmqq_tNhrzUUyaUtyLI0HIFwSkTRBOk0sEzYXXrGShTgPeqkY0uSgOaGa-8cU5bD0pIuSK3_7sIALsx4peLh93pt_wFbrVQRw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Ping, W.L.</creator><creator>Jian, X.</creator><creator>Phuan, A.T.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Liquid drop photonic signal analysis using fast learning artificial neural networks</title><author>Ping, W.L. ; Jian, X. ; Phuan, A.T.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-24b92c3cf14eca48c2dc345cb0295fb0e486ebb4d3d5678e508b4b8aa59be4233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Artificial neural networks</topic><topic>Capacitors</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Linear discriminant analysis</topic><topic>Liquids</topic><topic>Optical refraction</topic><topic>Photonics</topic><topic>Signal analysis</topic><topic>Welding</topic><toplevel>online_resources</toplevel><creatorcontrib>Ping, W.L.</creatorcontrib><creatorcontrib>Jian, X.</creatorcontrib><creatorcontrib>Phuan, A.T.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ping, W.L.</au><au>Jian, X.</au><au>Phuan, A.T.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Liquid drop photonic signal analysis using fast learning artificial neural networks</atitle><btitle>Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint</btitle><stitle>ICICS</stitle><date>2003</date><risdate>2003</risdate><volume>2</volume><spage>1018</spage><epage>1022 vol.2</epage><pages>1018-1022 vol.2</pages><isbn>0780381858</isbn><isbn>9780780381858</isbn><abstract>This paper presents a treatment on data obtained from a liquid drop photonic signal analyzer. The liquid drop analyzer extracts liquid features from different types of liquid drops and obtains a spectrum of characteristics. The data is then clustered using the K-means fast learning artificial neural network (K-FLANN) that implements a systematic reshuffling of the input data points to achieve consistent clustering, regardless of the data input sequence. An introduction of the K-FLANN network is presented in this paper as it is rarely encountered. The discussions explains how the K-FLANN stabilizes the cluster formations such that the resultant cluster centroids remain relatively consistent even though the clustering is done on data presented in a different sequence. The experimental results have a dual agenda. Firstly it shows that the liquid drop photonic data is a viable method of discriminating between liquids and secondly the K-FLANN is resilient changes in data presentation sequences and preserves the clustering consistencies.</abstract><pub>IEEE</pub><doi>10.1109/ICICS.2003.1292613</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780381858
ispartof Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, 2003, Vol.2, p.1018-1022 vol.2
issn
language eng
recordid cdi_ieee_primary_1292613
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Capacitors
Data mining
Feature extraction
Linear discriminant analysis
Liquids
Optical refraction
Photonics
Signal analysis
Welding
title Liquid drop photonic signal analysis using fast learning artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Liquid%20drop%20photonic%20signal%20analysis%20using%20fast%20learning%20artificial%20neural%20networks&rft.btitle=Fourth%20International%20Conference%20on%20Information,%20Communications%20and%20Signal%20Processing,%202003%20and%20the%20Fourth%20Pacific%20Rim%20Conference%20on%20Multimedia.%20Proceedings%20of%20the%202003%20Joint&rft.au=Ping,%20W.L.&rft.date=2003&rft.volume=2&rft.spage=1018&rft.epage=1022%20vol.2&rft.pages=1018-1022%20vol.2&rft.isbn=0780381858&rft.isbn_list=9780780381858&rft_id=info:doi/10.1109/ICICS.2003.1292613&rft_dat=%3Cieee_6IE%3E1292613%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1292613&rfr_iscdi=true