Liquid drop photonic signal analysis using fast learning artificial neural networks
This paper presents a treatment on data obtained from a liquid drop photonic signal analyzer. The liquid drop analyzer extracts liquid features from different types of liquid drops and obtains a spectrum of characteristics. The data is then clustered using the K-means fast learning artificial neural...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1022 vol.2 |
---|---|
container_issue | |
container_start_page | 1018 |
container_title | |
container_volume | 2 |
creator | Ping, W.L. Jian, X. Phuan, A.T.L. |
description | This paper presents a treatment on data obtained from a liquid drop photonic signal analyzer. The liquid drop analyzer extracts liquid features from different types of liquid drops and obtains a spectrum of characteristics. The data is then clustered using the K-means fast learning artificial neural network (K-FLANN) that implements a systematic reshuffling of the input data points to achieve consistent clustering, regardless of the data input sequence. An introduction of the K-FLANN network is presented in this paper as it is rarely encountered. The discussions explains how the K-FLANN stabilizes the cluster formations such that the resultant cluster centroids remain relatively consistent even though the clustering is done on data presented in a different sequence. The experimental results have a dual agenda. Firstly it shows that the liquid drop photonic data is a viable method of discriminating between liquids and secondly the K-FLANN is resilient changes in data presentation sequences and preserves the clustering consistencies. |
doi_str_mv | 10.1109/ICICS.2003.1292613 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1292613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1292613</ieee_id><sourcerecordid>1292613</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-24b92c3cf14eca48c2dc345cb0295fb0e486ebb4d3d5678e508b4b8aa59be4233</originalsourceid><addsrcrecordid>eNotj9tKxDAYhAMiqOu-gN7kBVpzbJNLKR4KC16sXi9J-nf9tbY1aZF9e-u6czEfA8PAEHLDWc45s3d1VVfbXDAmcy6sKLg8I1esNEwabrS5IOuUPtgiabUQ9pJsN_g9Y0ObOIx0fB-mocdAE-5711G32CFhonPCfk9blybagYv9X3JxwhYDLr0e5njE9DPEz3RNzlvXJVifuCJvjw-v1XO2eXmqq_tNhrzUUyaUtyLI0HIFwSkTRBOk0sEzYXXrGShTgPeqkY0uSgOaGa-8cU5bD0pIuSK3_7sIALsx4peLh93pt_wFbrVQRw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Liquid drop photonic signal analysis using fast learning artificial neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ping, W.L. ; Jian, X. ; Phuan, A.T.L.</creator><creatorcontrib>Ping, W.L. ; Jian, X. ; Phuan, A.T.L.</creatorcontrib><description>This paper presents a treatment on data obtained from a liquid drop photonic signal analyzer. The liquid drop analyzer extracts liquid features from different types of liquid drops and obtains a spectrum of characteristics. The data is then clustered using the K-means fast learning artificial neural network (K-FLANN) that implements a systematic reshuffling of the input data points to achieve consistent clustering, regardless of the data input sequence. An introduction of the K-FLANN network is presented in this paper as it is rarely encountered. The discussions explains how the K-FLANN stabilizes the cluster formations such that the resultant cluster centroids remain relatively consistent even though the clustering is done on data presented in a different sequence. The experimental results have a dual agenda. Firstly it shows that the liquid drop photonic data is a viable method of discriminating between liquids and secondly the K-FLANN is resilient changes in data presentation sequences and preserves the clustering consistencies.</description><identifier>ISBN: 0780381858</identifier><identifier>ISBN: 9780780381858</identifier><identifier>DOI: 10.1109/ICICS.2003.1292613</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Capacitors ; Data mining ; Feature extraction ; Linear discriminant analysis ; Liquids ; Optical refraction ; Photonics ; Signal analysis ; Welding</subject><ispartof>Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, 2003, Vol.2, p.1018-1022 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1292613$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1292613$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ping, W.L.</creatorcontrib><creatorcontrib>Jian, X.</creatorcontrib><creatorcontrib>Phuan, A.T.L.</creatorcontrib><title>Liquid drop photonic signal analysis using fast learning artificial neural networks</title><title>Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint</title><addtitle>ICICS</addtitle><description>This paper presents a treatment on data obtained from a liquid drop photonic signal analyzer. The liquid drop analyzer extracts liquid features from different types of liquid drops and obtains a spectrum of characteristics. The data is then clustered using the K-means fast learning artificial neural network (K-FLANN) that implements a systematic reshuffling of the input data points to achieve consistent clustering, regardless of the data input sequence. An introduction of the K-FLANN network is presented in this paper as it is rarely encountered. The discussions explains how the K-FLANN stabilizes the cluster formations such that the resultant cluster centroids remain relatively consistent even though the clustering is done on data presented in a different sequence. The experimental results have a dual agenda. Firstly it shows that the liquid drop photonic data is a viable method of discriminating between liquids and secondly the K-FLANN is resilient changes in data presentation sequences and preserves the clustering consistencies.</description><subject>Artificial neural networks</subject><subject>Capacitors</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Linear discriminant analysis</subject><subject>Liquids</subject><subject>Optical refraction</subject><subject>Photonics</subject><subject>Signal analysis</subject><subject>Welding</subject><isbn>0780381858</isbn><isbn>9780780381858</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj9tKxDAYhAMiqOu-gN7kBVpzbJNLKR4KC16sXi9J-nf9tbY1aZF9e-u6czEfA8PAEHLDWc45s3d1VVfbXDAmcy6sKLg8I1esNEwabrS5IOuUPtgiabUQ9pJsN_g9Y0ObOIx0fB-mocdAE-5711G32CFhonPCfk9blybagYv9X3JxwhYDLr0e5njE9DPEz3RNzlvXJVifuCJvjw-v1XO2eXmqq_tNhrzUUyaUtyLI0HIFwSkTRBOk0sEzYXXrGShTgPeqkY0uSgOaGa-8cU5bD0pIuSK3_7sIALsx4peLh93pt_wFbrVQRw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Ping, W.L.</creator><creator>Jian, X.</creator><creator>Phuan, A.T.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Liquid drop photonic signal analysis using fast learning artificial neural networks</title><author>Ping, W.L. ; Jian, X. ; Phuan, A.T.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-24b92c3cf14eca48c2dc345cb0295fb0e486ebb4d3d5678e508b4b8aa59be4233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Artificial neural networks</topic><topic>Capacitors</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Linear discriminant analysis</topic><topic>Liquids</topic><topic>Optical refraction</topic><topic>Photonics</topic><topic>Signal analysis</topic><topic>Welding</topic><toplevel>online_resources</toplevel><creatorcontrib>Ping, W.L.</creatorcontrib><creatorcontrib>Jian, X.</creatorcontrib><creatorcontrib>Phuan, A.T.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ping, W.L.</au><au>Jian, X.</au><au>Phuan, A.T.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Liquid drop photonic signal analysis using fast learning artificial neural networks</atitle><btitle>Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint</btitle><stitle>ICICS</stitle><date>2003</date><risdate>2003</risdate><volume>2</volume><spage>1018</spage><epage>1022 vol.2</epage><pages>1018-1022 vol.2</pages><isbn>0780381858</isbn><isbn>9780780381858</isbn><abstract>This paper presents a treatment on data obtained from a liquid drop photonic signal analyzer. The liquid drop analyzer extracts liquid features from different types of liquid drops and obtains a spectrum of characteristics. The data is then clustered using the K-means fast learning artificial neural network (K-FLANN) that implements a systematic reshuffling of the input data points to achieve consistent clustering, regardless of the data input sequence. An introduction of the K-FLANN network is presented in this paper as it is rarely encountered. The discussions explains how the K-FLANN stabilizes the cluster formations such that the resultant cluster centroids remain relatively consistent even though the clustering is done on data presented in a different sequence. The experimental results have a dual agenda. Firstly it shows that the liquid drop photonic data is a viable method of discriminating between liquids and secondly the K-FLANN is resilient changes in data presentation sequences and preserves the clustering consistencies.</abstract><pub>IEEE</pub><doi>10.1109/ICICS.2003.1292613</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780381858 |
ispartof | Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, 2003, Vol.2, p.1018-1022 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1292613 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Capacitors Data mining Feature extraction Linear discriminant analysis Liquids Optical refraction Photonics Signal analysis Welding |
title | Liquid drop photonic signal analysis using fast learning artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Liquid%20drop%20photonic%20signal%20analysis%20using%20fast%20learning%20artificial%20neural%20networks&rft.btitle=Fourth%20International%20Conference%20on%20Information,%20Communications%20and%20Signal%20Processing,%202003%20and%20the%20Fourth%20Pacific%20Rim%20Conference%20on%20Multimedia.%20Proceedings%20of%20the%202003%20Joint&rft.au=Ping,%20W.L.&rft.date=2003&rft.volume=2&rft.spage=1018&rft.epage=1022%20vol.2&rft.pages=1018-1022%20vol.2&rft.isbn=0780381858&rft.isbn_list=9780780381858&rft_id=info:doi/10.1109/ICICS.2003.1292613&rft_dat=%3Cieee_6IE%3E1292613%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1292613&rfr_iscdi=true |