Detection of non-identical duplicate consumer photographs
Consumers often make more than one photograph of the same scene, creating non-identical "duplicates" and similar "non-duplicates". In Kodak's consumer photography database, 19% of the images fall into this category. Automatic detection of duplicates, therefore, is extremely...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 Vol.1 |
---|---|
container_issue | |
container_start_page | 16 |
container_title | |
container_volume | 1 |
creator | Jaimes, A. Shih-Fu Chang Loui, A.C. |
description | Consumers often make more than one photograph of the same scene, creating non-identical "duplicates" and similar "non-duplicates". In Kodak's consumer photography database, 19% of the images fall into this category. Automatic detection of duplicates, therefore, is extremely useful in consumer applications. In this paper, first we develop a model of the problem and introduce a new classification of different types of duplicates. Then, we introduce a novel framework that automatically distinguishes between non-identical duplicate and very similar non-duplicate images. Our approach is based on a multiple strategy framework that combines our knowledge about the geometry of multiple views of the same scene, the extraction of low-level features, the detection of a limited number of semantic objects, and domain knowledge. The approach consists of three stages: (1) global alignment, (2) detection of change areas, and (3) local analysis of change areas. We present a novel and extensive image duplicate database (255 image pairs from 60 rolls from 54 real consumers, labeled by 10 other people). We analyze labeling subjectivity in detail and present experiments using our approach. |
doi_str_mv | 10.1109/ICICS.2003.1292404 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1292404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1292404</ieee_id><sourcerecordid>1292404</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-eeedc916b0994f0a985b0ecf5a67090aab435c9ab216013e9ed942dd0b878d153</originalsourceid><addsrcrecordid>eNotj81KxDAURgMiqOO8gG7yAq03SdPmLqX-FQZcqOshTW6dSKcpTWbh21twvs05qwMfY3cCSiEAH7q2az9KCaBKIVFWUF2wG2gMKCOMNldsm9IPrFOopcRrhk-UyeUQJx4HPsWpCJ6mHJwduT_N4yqZuItTOh1p4fMh5vi92PmQbtnlYMdE2zM37Ovl-bN9K3bvr137uCuCaHQuiMg7FHUPiNUAFo3ugdygbd0AgrV9pbRD20tRg1CE5LGS3kNvGuOFVht2_98Na2o_L-Fol9_9-Z36A07qRi0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of non-identical duplicate consumer photographs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jaimes, A. ; Shih-Fu Chang ; Loui, A.C.</creator><creatorcontrib>Jaimes, A. ; Shih-Fu Chang ; Loui, A.C.</creatorcontrib><description>Consumers often make more than one photograph of the same scene, creating non-identical "duplicates" and similar "non-duplicates". In Kodak's consumer photography database, 19% of the images fall into this category. Automatic detection of duplicates, therefore, is extremely useful in consumer applications. In this paper, first we develop a model of the problem and introduce a new classification of different types of duplicates. Then, we introduce a novel framework that automatically distinguishes between non-identical duplicate and very similar non-duplicate images. Our approach is based on a multiple strategy framework that combines our knowledge about the geometry of multiple views of the same scene, the extraction of low-level features, the detection of a limited number of semantic objects, and domain knowledge. The approach consists of three stages: (1) global alignment, (2) detection of change areas, and (3) local analysis of change areas. We present a novel and extensive image duplicate database (255 image pairs from 60 rolls from 54 real consumers, labeled by 10 other people). We analyze labeling subjectivity in detail and present experiments using our approach.</description><identifier>ISBN: 0780381858</identifier><identifier>ISBN: 9780780381858</identifier><identifier>DOI: 10.1109/ICICS.2003.1292404</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Feature extraction ; Geometry ; Image analysis ; Image databases ; Labeling ; Laboratories ; Layout ; Object detection ; Photography</subject><ispartof>Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, 2003, Vol.1, p.16-20 Vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1292404$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1292404$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jaimes, A.</creatorcontrib><creatorcontrib>Shih-Fu Chang</creatorcontrib><creatorcontrib>Loui, A.C.</creatorcontrib><title>Detection of non-identical duplicate consumer photographs</title><title>Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint</title><addtitle>ICICS</addtitle><description>Consumers often make more than one photograph of the same scene, creating non-identical "duplicates" and similar "non-duplicates". In Kodak's consumer photography database, 19% of the images fall into this category. Automatic detection of duplicates, therefore, is extremely useful in consumer applications. In this paper, first we develop a model of the problem and introduce a new classification of different types of duplicates. Then, we introduce a novel framework that automatically distinguishes between non-identical duplicate and very similar non-duplicate images. Our approach is based on a multiple strategy framework that combines our knowledge about the geometry of multiple views of the same scene, the extraction of low-level features, the detection of a limited number of semantic objects, and domain knowledge. The approach consists of three stages: (1) global alignment, (2) detection of change areas, and (3) local analysis of change areas. We present a novel and extensive image duplicate database (255 image pairs from 60 rolls from 54 real consumers, labeled by 10 other people). We analyze labeling subjectivity in detail and present experiments using our approach.</description><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Geometry</subject><subject>Image analysis</subject><subject>Image databases</subject><subject>Labeling</subject><subject>Laboratories</subject><subject>Layout</subject><subject>Object detection</subject><subject>Photography</subject><isbn>0780381858</isbn><isbn>9780780381858</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAURgMiqOO8gG7yAq03SdPmLqX-FQZcqOshTW6dSKcpTWbh21twvs05qwMfY3cCSiEAH7q2az9KCaBKIVFWUF2wG2gMKCOMNldsm9IPrFOopcRrhk-UyeUQJx4HPsWpCJ6mHJwduT_N4yqZuItTOh1p4fMh5vi92PmQbtnlYMdE2zM37Ovl-bN9K3bvr137uCuCaHQuiMg7FHUPiNUAFo3ugdygbd0AgrV9pbRD20tRg1CE5LGS3kNvGuOFVht2_98Na2o_L-Fol9_9-Z36A07qRi0</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Jaimes, A.</creator><creator>Shih-Fu Chang</creator><creator>Loui, A.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Detection of non-identical duplicate consumer photographs</title><author>Jaimes, A. ; Shih-Fu Chang ; Loui, A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-eeedc916b0994f0a985b0ecf5a67090aab435c9ab216013e9ed942dd0b878d153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Geometry</topic><topic>Image analysis</topic><topic>Image databases</topic><topic>Labeling</topic><topic>Laboratories</topic><topic>Layout</topic><topic>Object detection</topic><topic>Photography</topic><toplevel>online_resources</toplevel><creatorcontrib>Jaimes, A.</creatorcontrib><creatorcontrib>Shih-Fu Chang</creatorcontrib><creatorcontrib>Loui, A.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jaimes, A.</au><au>Shih-Fu Chang</au><au>Loui, A.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of non-identical duplicate consumer photographs</atitle><btitle>Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint</btitle><stitle>ICICS</stitle><date>2003</date><risdate>2003</risdate><volume>1</volume><spage>16</spage><epage>20 Vol.1</epage><pages>16-20 Vol.1</pages><isbn>0780381858</isbn><isbn>9780780381858</isbn><abstract>Consumers often make more than one photograph of the same scene, creating non-identical "duplicates" and similar "non-duplicates". In Kodak's consumer photography database, 19% of the images fall into this category. Automatic detection of duplicates, therefore, is extremely useful in consumer applications. In this paper, first we develop a model of the problem and introduce a new classification of different types of duplicates. Then, we introduce a novel framework that automatically distinguishes between non-identical duplicate and very similar non-duplicate images. Our approach is based on a multiple strategy framework that combines our knowledge about the geometry of multiple views of the same scene, the extraction of low-level features, the detection of a limited number of semantic objects, and domain knowledge. The approach consists of three stages: (1) global alignment, (2) detection of change areas, and (3) local analysis of change areas. We present a novel and extensive image duplicate database (255 image pairs from 60 rolls from 54 real consumers, labeled by 10 other people). We analyze labeling subjectivity in detail and present experiments using our approach.</abstract><pub>IEEE</pub><doi>10.1109/ICICS.2003.1292404</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780381858 |
ispartof | Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, 2003, Vol.1, p.16-20 Vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1292404 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer vision Feature extraction Geometry Image analysis Image databases Labeling Laboratories Layout Object detection Photography |
title | Detection of non-identical duplicate consumer photographs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20non-identical%20duplicate%20consumer%20photographs&rft.btitle=Fourth%20International%20Conference%20on%20Information,%20Communications%20and%20Signal%20Processing,%202003%20and%20the%20Fourth%20Pacific%20Rim%20Conference%20on%20Multimedia.%20Proceedings%20of%20the%202003%20Joint&rft.au=Jaimes,%20A.&rft.date=2003&rft.volume=1&rft.spage=16&rft.epage=20%20Vol.1&rft.pages=16-20%20Vol.1&rft.isbn=0780381858&rft.isbn_list=9780780381858&rft_id=info:doi/10.1109/ICICS.2003.1292404&rft_dat=%3Cieee_6IE%3E1292404%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1292404&rfr_iscdi=true |