Fuzzy semantic measurement for synonymy and its application in an automatic question-answering system
We present a novel methodology for the representation of sentences by fuzzy semantics, which is applied to the measurement of synonymy. The novelty of this methodology lies in a new way of dealing with the semantics of words and their functions in a sentence. Through the concept of "information...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 268 |
---|---|
container_issue | |
container_start_page | 263 |
container_title | |
container_volume | |
creator | Sun, J. Shaban, K. Podder, S. Karry, F. Basir O Kamel, M. |
description | We present a novel methodology for the representation of sentences by fuzzy semantics, which is applied to the measurement of synonymy. The novelty of this methodology lies in a new way of dealing with the semantics of words and their functions in a sentence. Through the concept of "information mass", a fuzzy semantic construct, a multidimensional information mass structure of a sentence is realized. The synonymy between sentences is then measured in terms of sentential information mass. We show how to measure the semantic closeness between sentences in order to cluster questions in an FAQ database and how to match a user's question to the closest database record. Experiment is done with a database of FAQ concerning intellectual property (patents and copyrights). |
doi_str_mv | 10.1109/NLPKE.2003.1275910 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1275910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1275910</ieee_id><sourcerecordid>1275910</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7382f0f511ecdf6f50d6b2f21c3037db48f50bc1bec944f96c6be2476213ea183</originalsourceid><addsrcrecordid>eNotkN1KxDAQhQMiKGtfQG_yAl3z0yTNpSy7Khb1Qq-XNJ1IZJPWJkW6T28XdxgY-IZz4ByEbilZU0r0_Wvz_rJdM0L4mjIlNCUXqNCqJstypQljV6hI6Zssw7WQUlwj2E3H44wTBBOztziASdMIAWLGrh9xmmMf5zBjEzvsc8JmGA7emuz7iH1cMDZT7oM5iX8mSKdHaWL6hdHHr0WfMoQbdOnMIUFxviv0udt-bJ7K5u3xefPQlJ4qkUvFa-aIE5SC7Zx0gnSyZY5Ry5cAXVvVC2otbcHqqnJaWtkCq5RklIOhNV-hu39fDwD7YfTBjPP-XAb_A182V-c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy semantic measurement for synonymy and its application in an automatic question-answering system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sun, J. ; Shaban, K. ; Podder, S. ; Karry, F. ; Basir O ; Kamel, M.</creator><creatorcontrib>Sun, J. ; Shaban, K. ; Podder, S. ; Karry, F. ; Basir O ; Kamel, M.</creatorcontrib><description>We present a novel methodology for the representation of sentences by fuzzy semantics, which is applied to the measurement of synonymy. The novelty of this methodology lies in a new way of dealing with the semantics of words and their functions in a sentence. Through the concept of "information mass", a fuzzy semantic construct, a multidimensional information mass structure of a sentence is realized. The synonymy between sentences is then measured in terms of sentential information mass. We show how to measure the semantic closeness between sentences in order to cluster questions in an FAQ database and how to match a user's question to the closest database record. Experiment is done with a database of FAQ concerning intellectual property (patents and copyrights).</description><identifier>ISBN: 9780780379022</identifier><identifier>ISBN: 0780379020</identifier><identifier>DOI: 10.1109/NLPKE.2003.1275910</identifier><language>eng</language><publisher>IEEE</publisher><subject>Design engineering ; Frequency ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Humans ; Natural languages ; Sun ; Systems engineering and theory</subject><ispartof>International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, 2003, p.263-268</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1275910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1275910$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, J.</creatorcontrib><creatorcontrib>Shaban, K.</creatorcontrib><creatorcontrib>Podder, S.</creatorcontrib><creatorcontrib>Karry, F.</creatorcontrib><creatorcontrib>Basir O</creatorcontrib><creatorcontrib>Kamel, M.</creatorcontrib><title>Fuzzy semantic measurement for synonymy and its application in an automatic question-answering system</title><title>International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003</title><addtitle>NLPKE</addtitle><description>We present a novel methodology for the representation of sentences by fuzzy semantics, which is applied to the measurement of synonymy. The novelty of this methodology lies in a new way of dealing with the semantics of words and their functions in a sentence. Through the concept of "information mass", a fuzzy semantic construct, a multidimensional information mass structure of a sentence is realized. The synonymy between sentences is then measured in terms of sentential information mass. We show how to measure the semantic closeness between sentences in order to cluster questions in an FAQ database and how to match a user's question to the closest database record. Experiment is done with a database of FAQ concerning intellectual property (patents and copyrights).</description><subject>Design engineering</subject><subject>Frequency</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Humans</subject><subject>Natural languages</subject><subject>Sun</subject><subject>Systems engineering and theory</subject><isbn>9780780379022</isbn><isbn>0780379020</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkN1KxDAQhQMiKGtfQG_yAl3z0yTNpSy7Khb1Qq-XNJ1IZJPWJkW6T28XdxgY-IZz4ByEbilZU0r0_Wvz_rJdM0L4mjIlNCUXqNCqJstypQljV6hI6Zssw7WQUlwj2E3H44wTBBOztziASdMIAWLGrh9xmmMf5zBjEzvsc8JmGA7emuz7iH1cMDZT7oM5iX8mSKdHaWL6hdHHr0WfMoQbdOnMIUFxviv0udt-bJ7K5u3xefPQlJ4qkUvFa-aIE5SC7Zx0gnSyZY5Ry5cAXVvVC2otbcHqqnJaWtkCq5RklIOhNV-hu39fDwD7YfTBjPP-XAb_A182V-c</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Sun, J.</creator><creator>Shaban, K.</creator><creator>Podder, S.</creator><creator>Karry, F.</creator><creator>Basir O</creator><creator>Kamel, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Fuzzy semantic measurement for synonymy and its application in an automatic question-answering system</title><author>Sun, J. ; Shaban, K. ; Podder, S. ; Karry, F. ; Basir O ; Kamel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7382f0f511ecdf6f50d6b2f21c3037db48f50bc1bec944f96c6be2476213ea183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Design engineering</topic><topic>Frequency</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Humans</topic><topic>Natural languages</topic><topic>Sun</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, J.</creatorcontrib><creatorcontrib>Shaban, K.</creatorcontrib><creatorcontrib>Podder, S.</creatorcontrib><creatorcontrib>Karry, F.</creatorcontrib><creatorcontrib>Basir O</creatorcontrib><creatorcontrib>Kamel, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, J.</au><au>Shaban, K.</au><au>Podder, S.</au><au>Karry, F.</au><au>Basir O</au><au>Kamel, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy semantic measurement for synonymy and its application in an automatic question-answering system</atitle><btitle>International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003</btitle><stitle>NLPKE</stitle><date>2003</date><risdate>2003</risdate><spage>263</spage><epage>268</epage><pages>263-268</pages><isbn>9780780379022</isbn><isbn>0780379020</isbn><abstract>We present a novel methodology for the representation of sentences by fuzzy semantics, which is applied to the measurement of synonymy. The novelty of this methodology lies in a new way of dealing with the semantics of words and their functions in a sentence. Through the concept of "information mass", a fuzzy semantic construct, a multidimensional information mass structure of a sentence is realized. The synonymy between sentences is then measured in terms of sentential information mass. We show how to measure the semantic closeness between sentences in order to cluster questions in an FAQ database and how to match a user's question to the closest database record. Experiment is done with a database of FAQ concerning intellectual property (patents and copyrights).</abstract><pub>IEEE</pub><doi>10.1109/NLPKE.2003.1275910</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780379022 |
ispartof | International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, 2003, p.263-268 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1275910 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Design engineering Frequency Fuzzy logic Fuzzy sets Fuzzy systems Humans Natural languages Sun Systems engineering and theory |
title | Fuzzy semantic measurement for synonymy and its application in an automatic question-answering system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20semantic%20measurement%20for%20synonymy%20and%20its%20application%20in%20an%20automatic%20question-answering%20system&rft.btitle=International%20Conference%20on%20Natural%20Language%20Processing%20and%20Knowledge%20Engineering,%202003.%20Proceedings.%202003&rft.au=Sun,%20J.&rft.date=2003&rft.spage=263&rft.epage=268&rft.pages=263-268&rft.isbn=9780780379022&rft.isbn_list=0780379020&rft_id=info:doi/10.1109/NLPKE.2003.1275910&rft_dat=%3Cieee_6IE%3E1275910%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1275910&rfr_iscdi=true |