Fuzzy semantic measurement for synonymy and its application in an automatic question-answering system

We present a novel methodology for the representation of sentences by fuzzy semantics, which is applied to the measurement of synonymy. The novelty of this methodology lies in a new way of dealing with the semantics of words and their functions in a sentence. Through the concept of "information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sun, J., Shaban, K., Podder, S., Karry, F., Basir O, Kamel, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue
container_start_page 263
container_title
container_volume
creator Sun, J.
Shaban, K.
Podder, S.
Karry, F.
Basir O
Kamel, M.
description We present a novel methodology for the representation of sentences by fuzzy semantics, which is applied to the measurement of synonymy. The novelty of this methodology lies in a new way of dealing with the semantics of words and their functions in a sentence. Through the concept of "information mass", a fuzzy semantic construct, a multidimensional information mass structure of a sentence is realized. The synonymy between sentences is then measured in terms of sentential information mass. We show how to measure the semantic closeness between sentences in order to cluster questions in an FAQ database and how to match a user's question to the closest database record. Experiment is done with a database of FAQ concerning intellectual property (patents and copyrights).
doi_str_mv 10.1109/NLPKE.2003.1275910
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1275910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1275910</ieee_id><sourcerecordid>1275910</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7382f0f511ecdf6f50d6b2f21c3037db48f50bc1bec944f96c6be2476213ea183</originalsourceid><addsrcrecordid>eNotkN1KxDAQhQMiKGtfQG_yAl3z0yTNpSy7Khb1Qq-XNJ1IZJPWJkW6T28XdxgY-IZz4ByEbilZU0r0_Wvz_rJdM0L4mjIlNCUXqNCqJstypQljV6hI6Zssw7WQUlwj2E3H44wTBBOztziASdMIAWLGrh9xmmMf5zBjEzvsc8JmGA7emuz7iH1cMDZT7oM5iX8mSKdHaWL6hdHHr0WfMoQbdOnMIUFxviv0udt-bJ7K5u3xefPQlJ4qkUvFa-aIE5SC7Zx0gnSyZY5Ry5cAXVvVC2otbcHqqnJaWtkCq5RklIOhNV-hu39fDwD7YfTBjPP-XAb_A182V-c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy semantic measurement for synonymy and its application in an automatic question-answering system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sun, J. ; Shaban, K. ; Podder, S. ; Karry, F. ; Basir O ; Kamel, M.</creator><creatorcontrib>Sun, J. ; Shaban, K. ; Podder, S. ; Karry, F. ; Basir O ; Kamel, M.</creatorcontrib><description>We present a novel methodology for the representation of sentences by fuzzy semantics, which is applied to the measurement of synonymy. The novelty of this methodology lies in a new way of dealing with the semantics of words and their functions in a sentence. Through the concept of "information mass", a fuzzy semantic construct, a multidimensional information mass structure of a sentence is realized. The synonymy between sentences is then measured in terms of sentential information mass. We show how to measure the semantic closeness between sentences in order to cluster questions in an FAQ database and how to match a user's question to the closest database record. Experiment is done with a database of FAQ concerning intellectual property (patents and copyrights).</description><identifier>ISBN: 9780780379022</identifier><identifier>ISBN: 0780379020</identifier><identifier>DOI: 10.1109/NLPKE.2003.1275910</identifier><language>eng</language><publisher>IEEE</publisher><subject>Design engineering ; Frequency ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Humans ; Natural languages ; Sun ; Systems engineering and theory</subject><ispartof>International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, 2003, p.263-268</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1275910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1275910$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, J.</creatorcontrib><creatorcontrib>Shaban, K.</creatorcontrib><creatorcontrib>Podder, S.</creatorcontrib><creatorcontrib>Karry, F.</creatorcontrib><creatorcontrib>Basir O</creatorcontrib><creatorcontrib>Kamel, M.</creatorcontrib><title>Fuzzy semantic measurement for synonymy and its application in an automatic question-answering system</title><title>International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003</title><addtitle>NLPKE</addtitle><description>We present a novel methodology for the representation of sentences by fuzzy semantics, which is applied to the measurement of synonymy. The novelty of this methodology lies in a new way of dealing with the semantics of words and their functions in a sentence. Through the concept of "information mass", a fuzzy semantic construct, a multidimensional information mass structure of a sentence is realized. The synonymy between sentences is then measured in terms of sentential information mass. We show how to measure the semantic closeness between sentences in order to cluster questions in an FAQ database and how to match a user's question to the closest database record. Experiment is done with a database of FAQ concerning intellectual property (patents and copyrights).</description><subject>Design engineering</subject><subject>Frequency</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Humans</subject><subject>Natural languages</subject><subject>Sun</subject><subject>Systems engineering and theory</subject><isbn>9780780379022</isbn><isbn>0780379020</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkN1KxDAQhQMiKGtfQG_yAl3z0yTNpSy7Khb1Qq-XNJ1IZJPWJkW6T28XdxgY-IZz4ByEbilZU0r0_Wvz_rJdM0L4mjIlNCUXqNCqJstypQljV6hI6Zssw7WQUlwj2E3H44wTBBOztziASdMIAWLGrh9xmmMf5zBjEzvsc8JmGA7emuz7iH1cMDZT7oM5iX8mSKdHaWL6hdHHr0WfMoQbdOnMIUFxviv0udt-bJ7K5u3xefPQlJ4qkUvFa-aIE5SC7Zx0gnSyZY5Ry5cAXVvVC2otbcHqqnJaWtkCq5RklIOhNV-hu39fDwD7YfTBjPP-XAb_A182V-c</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Sun, J.</creator><creator>Shaban, K.</creator><creator>Podder, S.</creator><creator>Karry, F.</creator><creator>Basir O</creator><creator>Kamel, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Fuzzy semantic measurement for synonymy and its application in an automatic question-answering system</title><author>Sun, J. ; Shaban, K. ; Podder, S. ; Karry, F. ; Basir O ; Kamel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7382f0f511ecdf6f50d6b2f21c3037db48f50bc1bec944f96c6be2476213ea183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Design engineering</topic><topic>Frequency</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Humans</topic><topic>Natural languages</topic><topic>Sun</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, J.</creatorcontrib><creatorcontrib>Shaban, K.</creatorcontrib><creatorcontrib>Podder, S.</creatorcontrib><creatorcontrib>Karry, F.</creatorcontrib><creatorcontrib>Basir O</creatorcontrib><creatorcontrib>Kamel, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, J.</au><au>Shaban, K.</au><au>Podder, S.</au><au>Karry, F.</au><au>Basir O</au><au>Kamel, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy semantic measurement for synonymy and its application in an automatic question-answering system</atitle><btitle>International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003</btitle><stitle>NLPKE</stitle><date>2003</date><risdate>2003</risdate><spage>263</spage><epage>268</epage><pages>263-268</pages><isbn>9780780379022</isbn><isbn>0780379020</isbn><abstract>We present a novel methodology for the representation of sentences by fuzzy semantics, which is applied to the measurement of synonymy. The novelty of this methodology lies in a new way of dealing with the semantics of words and their functions in a sentence. Through the concept of "information mass", a fuzzy semantic construct, a multidimensional information mass structure of a sentence is realized. The synonymy between sentences is then measured in terms of sentential information mass. We show how to measure the semantic closeness between sentences in order to cluster questions in an FAQ database and how to match a user's question to the closest database record. Experiment is done with a database of FAQ concerning intellectual property (patents and copyrights).</abstract><pub>IEEE</pub><doi>10.1109/NLPKE.2003.1275910</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780379022
ispartof International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, 2003, p.263-268
issn
language eng
recordid cdi_ieee_primary_1275910
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Design engineering
Frequency
Fuzzy logic
Fuzzy sets
Fuzzy systems
Humans
Natural languages
Sun
Systems engineering and theory
title Fuzzy semantic measurement for synonymy and its application in an automatic question-answering system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20semantic%20measurement%20for%20synonymy%20and%20its%20application%20in%20an%20automatic%20question-answering%20system&rft.btitle=International%20Conference%20on%20Natural%20Language%20Processing%20and%20Knowledge%20Engineering,%202003.%20Proceedings.%202003&rft.au=Sun,%20J.&rft.date=2003&rft.spage=263&rft.epage=268&rft.pages=263-268&rft.isbn=9780780379022&rft.isbn_list=0780379020&rft_id=info:doi/10.1109/NLPKE.2003.1275910&rft_dat=%3Cieee_6IE%3E1275910%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1275910&rfr_iscdi=true