Reducing SVM classification time using multiple mirror classifiers
We propose an approach that uses mirror point pairs and a multiple classifier system to reduce the classification time of a support vector machine (SVM). Decisions made with multiple simple classifiers formed from mirror pairs are integrated to approximate the classification rule of a single SVM. A...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2004-04, Vol.34 (2), p.1173-1183 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose an approach that uses mirror point pairs and a multiple classifier system to reduce the classification time of a support vector machine (SVM). Decisions made with multiple simple classifiers formed from mirror pairs are integrated to approximate the classification rule of a single SVM. A coarse-to-fine approach is developed for selecting a given number of member classifiers. A clustering method, derived from the similarities between classifiers, is used for a coarse selection. A greedy strategy is then used for fine selection of member classifiers. Selected member classifiers are further refined by finding a weighted combination with a perceptron. Experimental results show that our approach can successfully speed up SVM decisions while maintaining comparable classification accuracy. |
---|---|
ISSN: | 1083-4419 2168-2267 1941-0492 2168-2275 |
DOI: | 10.1109/TSMCB.2003.821867 |