Reducing SVM classification time using multiple mirror classifiers

We propose an approach that uses mirror point pairs and a multiple classifier system to reduce the classification time of a support vector machine (SVM). Decisions made with multiple simple classifiers formed from mirror pairs are integrated to approximate the classification rule of a single SVM. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2004-04, Vol.34 (2), p.1173-1183
Hauptverfasser: Chen, Jiun-Hung, Chen, Chu-Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an approach that uses mirror point pairs and a multiple classifier system to reduce the classification time of a support vector machine (SVM). Decisions made with multiple simple classifiers formed from mirror pairs are integrated to approximate the classification rule of a single SVM. A coarse-to-fine approach is developed for selecting a given number of member classifiers. A clustering method, derived from the similarities between classifiers, is used for a coarse selection. A greedy strategy is then used for fine selection of member classifiers. Selected member classifiers are further refined by finding a weighted combination with a perceptron. Experimental results show that our approach can successfully speed up SVM decisions while maintaining comparable classification accuracy.
ISSN:1083-4419
2168-2267
1941-0492
2168-2275
DOI:10.1109/TSMCB.2003.821867