Evolutionary programming using mutations based on the Levy probability distribution

Studies evolutionary programming with mutations based on the Levy probability distribution. The Levy probability distribution has an infinite second moment and is, therefore, more likely to generate an offspring that is farther away from its parent than the commonly employed Gaussian mutation. Such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2004-02, Vol.8 (1), p.1-13
Hauptverfasser: Lee, C.-Y., Yao, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 1
container_title IEEE transactions on evolutionary computation
container_volume 8
creator Lee, C.-Y.
Yao, X.
description Studies evolutionary programming with mutations based on the Levy probability distribution. The Levy probability distribution has an infinite second moment and is, therefore, more likely to generate an offspring that is farther away from its parent than the commonly employed Gaussian mutation. Such likelihood depends on a parameter /spl alpha/ in the Levy distribution. We propose an evolutionary programming algorithm using adaptive as well as nonadaptive Levy mutations. The proposed algorithm was applied to multivariate functional optimization. Empirical evidence shows that, in the case of functions having many local optima, the performance of the proposed algorithm was better than that of classical evolutionary programming using Gaussian mutation.
doi_str_mv 10.1109/TEVC.2003.816583
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1266370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1266370</ieee_id><sourcerecordid>28732921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-1e9c0b984ec1e74d0e969b4bb314a9a701fe6fe99073fd6892bd61d4e2f887c73</originalsourceid><addsrcrecordid>eNp9kctrHDEMxofSQNOk90IuQ6DpabbyY2zrWJbtAxZyaFp6M_aMJnGYR2LPBPLf15MNBHrIRRLopw9JX1F8ZLBhDPDL1e7PdsMBxMYwVRvxpjhmKFkFwNXbXIPBSmvz913xPqVbACZrhsfFr93D1C9zmEYXH8u7OF1HNwxhvC6XtMZhmd3aTaV3idpyGsv5hso9PTzR3vnQh_mxbEOaY_BPSqfFUef6RB-e80nx-9vuavuj2l9-_7n9uq8aiXKuGGEDHo2khpGWLRAq9NJ7waRDp4F1pDpCBC26VhnkvlWslcQ7Y3SjxUnx-aCbF7lfKM12CKmhvncjTUuyBhWXolZ1Ji9eJbnRgiNnGTz_D7ydljjmK6wxArXMD84QHKAmTilF6uxdDEP-n2VgVzPsaoZdzbAHM_LIp2ddlxrXd9GNTUgvc7VEFAoyd3bgAhG9tLlSQoP4B-5Ck24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883974003</pqid></control><display><type>article</type><title>Evolutionary programming using mutations based on the Levy probability distribution</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, C.-Y. ; Yao, X.</creator><creatorcontrib>Lee, C.-Y. ; Yao, X.</creatorcontrib><description>Studies evolutionary programming with mutations based on the Levy probability distribution. The Levy probability distribution has an infinite second moment and is, therefore, more likely to generate an offspring that is farther away from its parent than the commonly employed Gaussian mutation. Such likelihood depends on a parameter /spl alpha/ in the Levy distribution. We propose an evolutionary programming algorithm using adaptive as well as nonadaptive Levy mutations. The proposed algorithm was applied to multivariate functional optimization. Empirical evidence shows that, in the case of functions having many local optima, the performance of the proposed algorithm was better than that of classical evolutionary programming using Gaussian mutation.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2003.816583</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Applied sciences ; Artificial intelligence ; Biology computing ; Computer science; control theory; systems ; Connectionism. Neural networks ; Electronic switching systems ; Evolution (biology) ; Evolutionary algorithms ; Evolutionary computation ; Exact sciences and technology ; Fractals ; Functional programming ; Gaussian ; Genetic algorithms ; Genetic mutations ; Genetic programming ; Mathematical analysis ; Mutations ; Optimization ; Parents ; Probability distribution</subject><ispartof>IEEE transactions on evolutionary computation, 2004-02, Vol.8 (1), p.1-13</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-1e9c0b984ec1e74d0e969b4bb314a9a701fe6fe99073fd6892bd61d4e2f887c73</citedby><cites>FETCH-LOGICAL-c494t-1e9c0b984ec1e74d0e969b4bb314a9a701fe6fe99073fd6892bd61d4e2f887c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1266370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1266370$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15499360$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, C.-Y.</creatorcontrib><creatorcontrib>Yao, X.</creatorcontrib><title>Evolutionary programming using mutations based on the Levy probability distribution</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Studies evolutionary programming with mutations based on the Levy probability distribution. The Levy probability distribution has an infinite second moment and is, therefore, more likely to generate an offspring that is farther away from its parent than the commonly employed Gaussian mutation. Such likelihood depends on a parameter /spl alpha/ in the Levy distribution. We propose an evolutionary programming algorithm using adaptive as well as nonadaptive Levy mutations. The proposed algorithm was applied to multivariate functional optimization. Empirical evidence shows that, in the case of functions having many local optima, the performance of the proposed algorithm was better than that of classical evolutionary programming using Gaussian mutation.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biology computing</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Electronic switching systems</subject><subject>Evolution (biology)</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Exact sciences and technology</subject><subject>Fractals</subject><subject>Functional programming</subject><subject>Gaussian</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Genetic programming</subject><subject>Mathematical analysis</subject><subject>Mutations</subject><subject>Optimization</subject><subject>Parents</subject><subject>Probability distribution</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctrHDEMxofSQNOk90IuQ6DpabbyY2zrWJbtAxZyaFp6M_aMJnGYR2LPBPLf15MNBHrIRRLopw9JX1F8ZLBhDPDL1e7PdsMBxMYwVRvxpjhmKFkFwNXbXIPBSmvz913xPqVbACZrhsfFr93D1C9zmEYXH8u7OF1HNwxhvC6XtMZhmd3aTaV3idpyGsv5hso9PTzR3vnQh_mxbEOaY_BPSqfFUef6RB-e80nx-9vuavuj2l9-_7n9uq8aiXKuGGEDHo2khpGWLRAq9NJ7waRDp4F1pDpCBC26VhnkvlWslcQ7Y3SjxUnx-aCbF7lfKM12CKmhvncjTUuyBhWXolZ1Ji9eJbnRgiNnGTz_D7ydljjmK6wxArXMD84QHKAmTilF6uxdDEP-n2VgVzPsaoZdzbAHM_LIp2ddlxrXd9GNTUgvc7VEFAoyd3bgAhG9tLlSQoP4B-5Ck24</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Lee, C.-Y.</creator><creator>Yao, X.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040201</creationdate><title>Evolutionary programming using mutations based on the Levy probability distribution</title><author>Lee, C.-Y. ; Yao, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-1e9c0b984ec1e74d0e969b4bb314a9a701fe6fe99073fd6892bd61d4e2f887c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biology computing</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Electronic switching systems</topic><topic>Evolution (biology)</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Exact sciences and technology</topic><topic>Fractals</topic><topic>Functional programming</topic><topic>Gaussian</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Genetic programming</topic><topic>Mathematical analysis</topic><topic>Mutations</topic><topic>Optimization</topic><topic>Parents</topic><topic>Probability distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, C.-Y.</creatorcontrib><creatorcontrib>Yao, X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, C.-Y.</au><au>Yao, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary programming using mutations based on the Levy probability distribution</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2004-02-01</date><risdate>2004</risdate><volume>8</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Studies evolutionary programming with mutations based on the Levy probability distribution. The Levy probability distribution has an infinite second moment and is, therefore, more likely to generate an offspring that is farther away from its parent than the commonly employed Gaussian mutation. Such likelihood depends on a parameter /spl alpha/ in the Levy distribution. We propose an evolutionary programming algorithm using adaptive as well as nonadaptive Levy mutations. The proposed algorithm was applied to multivariate functional optimization. Empirical evidence shows that, in the case of functions having many local optima, the performance of the proposed algorithm was better than that of classical evolutionary programming using Gaussian mutation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2003.816583</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2004-02, Vol.8 (1), p.1-13
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_1266370
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Algorithms
Applied sciences
Artificial intelligence
Biology computing
Computer science
control theory
systems
Connectionism. Neural networks
Electronic switching systems
Evolution (biology)
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Fractals
Functional programming
Gaussian
Genetic algorithms
Genetic mutations
Genetic programming
Mathematical analysis
Mutations
Optimization
Parents
Probability distribution
title Evolutionary programming using mutations based on the Levy probability distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20programming%20using%20mutations%20based%20on%20the%20Levy%20probability%20distribution&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Lee,%20C.-Y.&rft.date=2004-02-01&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2003.816583&rft_dat=%3Cproquest_RIE%3E28732921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883974003&rft_id=info:pmid/&rft_ieee_id=1266370&rfr_iscdi=true