Empirical mode decomposition as a filter bank
Empirical mode decomposition (EMD) has recently been pioneered by Huang et al. for adaptively representing nonstationary signals as sums of zero-mean amplitude modulation frequency modulation components. In order to better understand the way EMD behaves in stochastic situations involving broadband n...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2004-02, Vol.11 (2), p.112-114 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 2 |
container_start_page | 112 |
container_title | IEEE signal processing letters |
container_volume | 11 |
creator | Flandrin, P. Rilling, G. Goncalves, P. |
description | Empirical mode decomposition (EMD) has recently been pioneered by Huang et al. for adaptively representing nonstationary signals as sums of zero-mean amplitude modulation frequency modulation components. In order to better understand the way EMD behaves in stochastic situations involving broadband noise, we report here on numerical experiments based on fractional Gaussian noise. In such a case, it turns out that EMD acts essentially as a dyadic filter bank resembling those involved in wavelet decompositions. It is also pointed out that the hierarchy of the extracted modes may be similarly exploited for getting access to the Hurst exponent. |
doi_str_mv | 10.1109/LSP.2003.821662 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1261951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1261951</ieee_id><sourcerecordid>2425766781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-1bf513444f9c8516bd5681420728af25000c96983b1012627580d595e00e040a3</originalsourceid><addsrcrecordid>eNp9kTFPwzAQhSMEEqUwM7BEDDCgtHd27NpjVRWKFAkkYLacxBEuSVzsFol_j6sgkBiY7obv3t29lyTnCBNEkNPi6XFCAOhEEOScHCQjZExkhHI8jD3MIJMSxHFyEsIaAAQKNkqyZbex3la6TTtXm7Q2les2LtitdX2qQ6rTxrZb49NS92-nyVGj22DOvus4ebldPi9WWfFwd7-YF1mVE77NsGwY0jzPG1kJhrysGReYE5gRoRvC4vZKciloiYCEkxkTUDPJDICBHDQdJzeD7qtu1cbbTvtP5bRVq3mhbO-tVgBsBhzZB0b6eqA33r3vTNiqzobKtK3ujdsFJSEaklOgkbz6lySCSkkERPDyD7h2O9_Hn5UQNGcUxF5tOkCVdyF40_yciqD2maiYidpnooZM4sTFMGGNMb804SijYV-DzYJp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883453083</pqid></control><display><type>article</type><title>Empirical mode decomposition as a filter bank</title><source>IEEE Electronic Library (IEL)</source><creator>Flandrin, P. ; Rilling, G. ; Goncalves, P.</creator><creatorcontrib>Flandrin, P. ; Rilling, G. ; Goncalves, P.</creatorcontrib><description>Empirical mode decomposition (EMD) has recently been pioneered by Huang et al. for adaptively representing nonstationary signals as sums of zero-mean amplitude modulation frequency modulation components. In order to better understand the way EMD behaves in stochastic situations involving broadband noise, we report here on numerical experiments based on fractional Gaussian noise. In such a case, it turns out that EMD acts essentially as a dyadic filter bank resembling those involved in wavelet decompositions. It is also pointed out that the hierarchy of the extracted modes may be similarly exploited for getting access to the Hurst exponent.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2003.821662</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1f noise ; Amplitude modulation ; Broadband ; Computer Science ; Decomposition ; Empirical analysis ; Engineering Sciences ; Filter bank ; Filter banks ; Filtering ; Frequency modulation ; Gaussian ; Gaussian noise ; Hierarchies ; Noise ; Signal analysis ; Signal and Image Processing ; Signal processing ; Stochastic resonance</subject><ispartof>IEEE signal processing letters, 2004-02, Vol.11 (2), p.112-114</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-1bf513444f9c8516bd5681420728af25000c96983b1012627580d595e00e040a3</citedby><cites>FETCH-LOGICAL-c426t-1bf513444f9c8516bd5681420728af25000c96983b1012627580d595e00e040a3</cites><orcidid>0000-0002-1781-6159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1261951$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1261951$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/inria-00570615$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Flandrin, P.</creatorcontrib><creatorcontrib>Rilling, G.</creatorcontrib><creatorcontrib>Goncalves, P.</creatorcontrib><title>Empirical mode decomposition as a filter bank</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Empirical mode decomposition (EMD) has recently been pioneered by Huang et al. for adaptively representing nonstationary signals as sums of zero-mean amplitude modulation frequency modulation components. In order to better understand the way EMD behaves in stochastic situations involving broadband noise, we report here on numerical experiments based on fractional Gaussian noise. In such a case, it turns out that EMD acts essentially as a dyadic filter bank resembling those involved in wavelet decompositions. It is also pointed out that the hierarchy of the extracted modes may be similarly exploited for getting access to the Hurst exponent.</description><subject>1f noise</subject><subject>Amplitude modulation</subject><subject>Broadband</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Empirical analysis</subject><subject>Engineering Sciences</subject><subject>Filter bank</subject><subject>Filter banks</subject><subject>Filtering</subject><subject>Frequency modulation</subject><subject>Gaussian</subject><subject>Gaussian noise</subject><subject>Hierarchies</subject><subject>Noise</subject><subject>Signal analysis</subject><subject>Signal and Image Processing</subject><subject>Signal processing</subject><subject>Stochastic resonance</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kTFPwzAQhSMEEqUwM7BEDDCgtHd27NpjVRWKFAkkYLacxBEuSVzsFol_j6sgkBiY7obv3t29lyTnCBNEkNPi6XFCAOhEEOScHCQjZExkhHI8jD3MIJMSxHFyEsIaAAQKNkqyZbex3la6TTtXm7Q2les2LtitdX2qQ6rTxrZb49NS92-nyVGj22DOvus4ebldPi9WWfFwd7-YF1mVE77NsGwY0jzPG1kJhrysGReYE5gRoRvC4vZKciloiYCEkxkTUDPJDICBHDQdJzeD7qtu1cbbTvtP5bRVq3mhbO-tVgBsBhzZB0b6eqA33r3vTNiqzobKtK3ujdsFJSEaklOgkbz6lySCSkkERPDyD7h2O9_Hn5UQNGcUxF5tOkCVdyF40_yciqD2maiYidpnooZM4sTFMGGNMb804SijYV-DzYJp</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Flandrin, P.</creator><creator>Rilling, G.</creator><creator>Goncalves, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1781-6159</orcidid></search><sort><creationdate>20040201</creationdate><title>Empirical mode decomposition as a filter bank</title><author>Flandrin, P. ; Rilling, G. ; Goncalves, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-1bf513444f9c8516bd5681420728af25000c96983b1012627580d595e00e040a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>1f noise</topic><topic>Amplitude modulation</topic><topic>Broadband</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Empirical analysis</topic><topic>Engineering Sciences</topic><topic>Filter bank</topic><topic>Filter banks</topic><topic>Filtering</topic><topic>Frequency modulation</topic><topic>Gaussian</topic><topic>Gaussian noise</topic><topic>Hierarchies</topic><topic>Noise</topic><topic>Signal analysis</topic><topic>Signal and Image Processing</topic><topic>Signal processing</topic><topic>Stochastic resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flandrin, P.</creatorcontrib><creatorcontrib>Rilling, G.</creatorcontrib><creatorcontrib>Goncalves, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Flandrin, P.</au><au>Rilling, G.</au><au>Goncalves, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical mode decomposition as a filter bank</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2004-02-01</date><risdate>2004</risdate><volume>11</volume><issue>2</issue><spage>112</spage><epage>114</epage><pages>112-114</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Empirical mode decomposition (EMD) has recently been pioneered by Huang et al. for adaptively representing nonstationary signals as sums of zero-mean amplitude modulation frequency modulation components. In order to better understand the way EMD behaves in stochastic situations involving broadband noise, we report here on numerical experiments based on fractional Gaussian noise. In such a case, it turns out that EMD acts essentially as a dyadic filter bank resembling those involved in wavelet decompositions. It is also pointed out that the hierarchy of the extracted modes may be similarly exploited for getting access to the Hurst exponent.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2003.821662</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-1781-6159</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2004-02, Vol.11 (2), p.112-114 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_1261951 |
source | IEEE Electronic Library (IEL) |
subjects | 1f noise Amplitude modulation Broadband Computer Science Decomposition Empirical analysis Engineering Sciences Filter bank Filter banks Filtering Frequency modulation Gaussian Gaussian noise Hierarchies Noise Signal analysis Signal and Image Processing Signal processing Stochastic resonance |
title | Empirical mode decomposition as a filter bank |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20mode%20decomposition%20as%20a%20filter%20bank&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Flandrin,%20P.&rft.date=2004-02-01&rft.volume=11&rft.issue=2&rft.spage=112&rft.epage=114&rft.pages=112-114&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2003.821662&rft_dat=%3Cproquest_RIE%3E2425766781%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883453083&rft_id=info:pmid/&rft_ieee_id=1261951&rfr_iscdi=true |