Querying text databases for efficient information extraction

A wealth of information is hidden within unstructured text. This information is often best exploited in structured or relational form, which is suited for sophisticated query processing, for integration with relational databases, and for data mining. Current information extraction techniques extract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Agichtein, E., Gravano, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue
container_start_page 113
container_title
container_volume
creator Agichtein, E.
Gravano, L.
description A wealth of information is hidden within unstructured text. This information is often best exploited in structured or relational form, which is suited for sophisticated query processing, for integration with relational databases, and for data mining. Current information extraction techniques extract relations from a text database by examining every document in the database, or use filters to select promising documents for extraction. The exhaustive scanning approach is not practical or even feasible for large databases, and the current filtering techniques require human involvement to maintain and to adapt to new databases and domains. We develop an automatic query-based technique to retrieve documents useful for the extraction of user-defined relations from large text databases, which can be adapted to new domains, databases, or target relations with minimal human effort. We report a thorough experimental evaluation over a large newspaper archive that shows that we significantly improve the efficiency of the extraction process by focusing only on promising documents.
doi_str_mv 10.1109/ICDE.2003.1260786
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1260786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1260786</ieee_id><sourcerecordid>1260786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-8dbe4787c15c4d3563f07dd8790d58f91f23c25ec175f7adeb917402f0611b623</originalsourceid><addsrcrecordid>eNotj91KAzEUhAMiKHUfQLzJC-x68p-AN7JWWyiUgl6XbHIiEbuVbAT79q7YuZlvYBgYQm4ZdIyBu1_3T8uOA4iOcQ3G6gvSOGNnAmG0VvqKNNP0AbOkEs7Ka_Kw-8ZyyuM7rfhTafTVD37CiaZjoZhSDhnHSvM454Ov-TjSuVd8-MMbcpn854TN2Rfk7Xn52q_azfZl3T9u2sC1rK2NA0pjTWAqyCiUFglMjNY4iMomxxIXgSsMzKhkfMTBMSOBJ9CMDZqLBbn7382IuP8q-eDLaX_-KH4BldpHKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Querying text databases for efficient information extraction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Agichtein, E. ; Gravano, L.</creator><creatorcontrib>Agichtein, E. ; Gravano, L.</creatorcontrib><description>A wealth of information is hidden within unstructured text. This information is often best exploited in structured or relational form, which is suited for sophisticated query processing, for integration with relational databases, and for data mining. Current information extraction techniques extract relations from a text database by examining every document in the database, or use filters to select promising documents for extraction. The exhaustive scanning approach is not practical or even feasible for large databases, and the current filtering techniques require human involvement to maintain and to adapt to new databases and domains. We develop an automatic query-based technique to retrieve documents useful for the extraction of user-defined relations from large text databases, which can be adapted to new domains, databases, or target relations with minimal human effort. We report a thorough experimental evaluation over a large newspaper archive that shows that we significantly improve the efficiency of the extraction process by focusing only on promising documents.</description><identifier>ISBN: 9780780376656</identifier><identifier>ISBN: 078037665X</identifier><identifier>DOI: 10.1109/ICDE.2003.1260786</identifier><language>eng</language><publisher>IEEE</publisher><subject>Corporate acquisitions ; Data mining ; Government ; Humans ; Information filtering ; Information filters ; Information retrieval ; Monitoring ; Query processing ; Relational databases</subject><ispartof>Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405), 2003, p.113-124</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-8dbe4787c15c4d3563f07dd8790d58f91f23c25ec175f7adeb917402f0611b623</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1260786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1260786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agichtein, E.</creatorcontrib><creatorcontrib>Gravano, L.</creatorcontrib><title>Querying text databases for efficient information extraction</title><title>Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405)</title><addtitle>ICDE</addtitle><description>A wealth of information is hidden within unstructured text. This information is often best exploited in structured or relational form, which is suited for sophisticated query processing, for integration with relational databases, and for data mining. Current information extraction techniques extract relations from a text database by examining every document in the database, or use filters to select promising documents for extraction. The exhaustive scanning approach is not practical or even feasible for large databases, and the current filtering techniques require human involvement to maintain and to adapt to new databases and domains. We develop an automatic query-based technique to retrieve documents useful for the extraction of user-defined relations from large text databases, which can be adapted to new domains, databases, or target relations with minimal human effort. We report a thorough experimental evaluation over a large newspaper archive that shows that we significantly improve the efficiency of the extraction process by focusing only on promising documents.</description><subject>Corporate acquisitions</subject><subject>Data mining</subject><subject>Government</subject><subject>Humans</subject><subject>Information filtering</subject><subject>Information filters</subject><subject>Information retrieval</subject><subject>Monitoring</subject><subject>Query processing</subject><subject>Relational databases</subject><isbn>9780780376656</isbn><isbn>078037665X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj91KAzEUhAMiKHUfQLzJC-x68p-AN7JWWyiUgl6XbHIiEbuVbAT79q7YuZlvYBgYQm4ZdIyBu1_3T8uOA4iOcQ3G6gvSOGNnAmG0VvqKNNP0AbOkEs7Ka_Kw-8ZyyuM7rfhTafTVD37CiaZjoZhSDhnHSvM454Ov-TjSuVd8-MMbcpn854TN2Rfk7Xn52q_azfZl3T9u2sC1rK2NA0pjTWAqyCiUFglMjNY4iMomxxIXgSsMzKhkfMTBMSOBJ9CMDZqLBbn7382IuP8q-eDLaX_-KH4BldpHKw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Agichtein, E.</creator><creator>Gravano, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2003</creationdate><title>Querying text databases for efficient information extraction</title><author>Agichtein, E. ; Gravano, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-8dbe4787c15c4d3563f07dd8790d58f91f23c25ec175f7adeb917402f0611b623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Corporate acquisitions</topic><topic>Data mining</topic><topic>Government</topic><topic>Humans</topic><topic>Information filtering</topic><topic>Information filters</topic><topic>Information retrieval</topic><topic>Monitoring</topic><topic>Query processing</topic><topic>Relational databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Agichtein, E.</creatorcontrib><creatorcontrib>Gravano, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agichtein, E.</au><au>Gravano, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Querying text databases for efficient information extraction</atitle><btitle>Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405)</btitle><stitle>ICDE</stitle><date>2003</date><risdate>2003</risdate><spage>113</spage><epage>124</epage><pages>113-124</pages><isbn>9780780376656</isbn><isbn>078037665X</isbn><abstract>A wealth of information is hidden within unstructured text. This information is often best exploited in structured or relational form, which is suited for sophisticated query processing, for integration with relational databases, and for data mining. Current information extraction techniques extract relations from a text database by examining every document in the database, or use filters to select promising documents for extraction. The exhaustive scanning approach is not practical or even feasible for large databases, and the current filtering techniques require human involvement to maintain and to adapt to new databases and domains. We develop an automatic query-based technique to retrieve documents useful for the extraction of user-defined relations from large text databases, which can be adapted to new domains, databases, or target relations with minimal human effort. We report a thorough experimental evaluation over a large newspaper archive that shows that we significantly improve the efficiency of the extraction process by focusing only on promising documents.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2003.1260786</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780376656
ispartof Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405), 2003, p.113-124
issn
language eng
recordid cdi_ieee_primary_1260786
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Corporate acquisitions
Data mining
Government
Humans
Information filtering
Information filters
Information retrieval
Monitoring
Query processing
Relational databases
title Querying text databases for efficient information extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Querying%20text%20databases%20for%20efficient%20information%20extraction&rft.btitle=Proceedings%2019th%20International%20Conference%20on%20Data%20Engineering%20(Cat.%20No.03CH37405)&rft.au=Agichtein,%20E.&rft.date=2003&rft.spage=113&rft.epage=124&rft.pages=113-124&rft.isbn=9780780376656&rft.isbn_list=078037665X&rft_id=info:doi/10.1109/ICDE.2003.1260786&rft_dat=%3Cieee_6IE%3E1260786%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1260786&rfr_iscdi=true