Querying text databases for efficient information extraction
A wealth of information is hidden within unstructured text. This information is often best exploited in structured or relational form, which is suited for sophisticated query processing, for integration with relational databases, and for data mining. Current information extraction techniques extract...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | |
container_start_page | 113 |
container_title | |
container_volume | |
creator | Agichtein, E. Gravano, L. |
description | A wealth of information is hidden within unstructured text. This information is often best exploited in structured or relational form, which is suited for sophisticated query processing, for integration with relational databases, and for data mining. Current information extraction techniques extract relations from a text database by examining every document in the database, or use filters to select promising documents for extraction. The exhaustive scanning approach is not practical or even feasible for large databases, and the current filtering techniques require human involvement to maintain and to adapt to new databases and domains. We develop an automatic query-based technique to retrieve documents useful for the extraction of user-defined relations from large text databases, which can be adapted to new domains, databases, or target relations with minimal human effort. We report a thorough experimental evaluation over a large newspaper archive that shows that we significantly improve the efficiency of the extraction process by focusing only on promising documents. |
doi_str_mv | 10.1109/ICDE.2003.1260786 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1260786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1260786</ieee_id><sourcerecordid>1260786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-8dbe4787c15c4d3563f07dd8790d58f91f23c25ec175f7adeb917402f0611b623</originalsourceid><addsrcrecordid>eNotj91KAzEUhAMiKHUfQLzJC-x68p-AN7JWWyiUgl6XbHIiEbuVbAT79q7YuZlvYBgYQm4ZdIyBu1_3T8uOA4iOcQ3G6gvSOGNnAmG0VvqKNNP0AbOkEs7Ka_Kw-8ZyyuM7rfhTafTVD37CiaZjoZhSDhnHSvM454Ov-TjSuVd8-MMbcpn854TN2Rfk7Xn52q_azfZl3T9u2sC1rK2NA0pjTWAqyCiUFglMjNY4iMomxxIXgSsMzKhkfMTBMSOBJ9CMDZqLBbn7382IuP8q-eDLaX_-KH4BldpHKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Querying text databases for efficient information extraction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Agichtein, E. ; Gravano, L.</creator><creatorcontrib>Agichtein, E. ; Gravano, L.</creatorcontrib><description>A wealth of information is hidden within unstructured text. This information is often best exploited in structured or relational form, which is suited for sophisticated query processing, for integration with relational databases, and for data mining. Current information extraction techniques extract relations from a text database by examining every document in the database, or use filters to select promising documents for extraction. The exhaustive scanning approach is not practical or even feasible for large databases, and the current filtering techniques require human involvement to maintain and to adapt to new databases and domains. We develop an automatic query-based technique to retrieve documents useful for the extraction of user-defined relations from large text databases, which can be adapted to new domains, databases, or target relations with minimal human effort. We report a thorough experimental evaluation over a large newspaper archive that shows that we significantly improve the efficiency of the extraction process by focusing only on promising documents.</description><identifier>ISBN: 9780780376656</identifier><identifier>ISBN: 078037665X</identifier><identifier>DOI: 10.1109/ICDE.2003.1260786</identifier><language>eng</language><publisher>IEEE</publisher><subject>Corporate acquisitions ; Data mining ; Government ; Humans ; Information filtering ; Information filters ; Information retrieval ; Monitoring ; Query processing ; Relational databases</subject><ispartof>Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405), 2003, p.113-124</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-8dbe4787c15c4d3563f07dd8790d58f91f23c25ec175f7adeb917402f0611b623</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1260786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1260786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agichtein, E.</creatorcontrib><creatorcontrib>Gravano, L.</creatorcontrib><title>Querying text databases for efficient information extraction</title><title>Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405)</title><addtitle>ICDE</addtitle><description>A wealth of information is hidden within unstructured text. This information is often best exploited in structured or relational form, which is suited for sophisticated query processing, for integration with relational databases, and for data mining. Current information extraction techniques extract relations from a text database by examining every document in the database, or use filters to select promising documents for extraction. The exhaustive scanning approach is not practical or even feasible for large databases, and the current filtering techniques require human involvement to maintain and to adapt to new databases and domains. We develop an automatic query-based technique to retrieve documents useful for the extraction of user-defined relations from large text databases, which can be adapted to new domains, databases, or target relations with minimal human effort. We report a thorough experimental evaluation over a large newspaper archive that shows that we significantly improve the efficiency of the extraction process by focusing only on promising documents.</description><subject>Corporate acquisitions</subject><subject>Data mining</subject><subject>Government</subject><subject>Humans</subject><subject>Information filtering</subject><subject>Information filters</subject><subject>Information retrieval</subject><subject>Monitoring</subject><subject>Query processing</subject><subject>Relational databases</subject><isbn>9780780376656</isbn><isbn>078037665X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj91KAzEUhAMiKHUfQLzJC-x68p-AN7JWWyiUgl6XbHIiEbuVbAT79q7YuZlvYBgYQm4ZdIyBu1_3T8uOA4iOcQ3G6gvSOGNnAmG0VvqKNNP0AbOkEs7Ka_Kw-8ZyyuM7rfhTafTVD37CiaZjoZhSDhnHSvM454Ov-TjSuVd8-MMbcpn854TN2Rfk7Xn52q_azfZl3T9u2sC1rK2NA0pjTWAqyCiUFglMjNY4iMomxxIXgSsMzKhkfMTBMSOBJ9CMDZqLBbn7382IuP8q-eDLaX_-KH4BldpHKw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Agichtein, E.</creator><creator>Gravano, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2003</creationdate><title>Querying text databases for efficient information extraction</title><author>Agichtein, E. ; Gravano, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-8dbe4787c15c4d3563f07dd8790d58f91f23c25ec175f7adeb917402f0611b623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Corporate acquisitions</topic><topic>Data mining</topic><topic>Government</topic><topic>Humans</topic><topic>Information filtering</topic><topic>Information filters</topic><topic>Information retrieval</topic><topic>Monitoring</topic><topic>Query processing</topic><topic>Relational databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Agichtein, E.</creatorcontrib><creatorcontrib>Gravano, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agichtein, E.</au><au>Gravano, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Querying text databases for efficient information extraction</atitle><btitle>Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405)</btitle><stitle>ICDE</stitle><date>2003</date><risdate>2003</risdate><spage>113</spage><epage>124</epage><pages>113-124</pages><isbn>9780780376656</isbn><isbn>078037665X</isbn><abstract>A wealth of information is hidden within unstructured text. This information is often best exploited in structured or relational form, which is suited for sophisticated query processing, for integration with relational databases, and for data mining. Current information extraction techniques extract relations from a text database by examining every document in the database, or use filters to select promising documents for extraction. The exhaustive scanning approach is not practical or even feasible for large databases, and the current filtering techniques require human involvement to maintain and to adapt to new databases and domains. We develop an automatic query-based technique to retrieve documents useful for the extraction of user-defined relations from large text databases, which can be adapted to new domains, databases, or target relations with minimal human effort. We report a thorough experimental evaluation over a large newspaper archive that shows that we significantly improve the efficiency of the extraction process by focusing only on promising documents.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2003.1260786</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780376656 |
ispartof | Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405), 2003, p.113-124 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1260786 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Corporate acquisitions Data mining Government Humans Information filtering Information filters Information retrieval Monitoring Query processing Relational databases |
title | Querying text databases for efficient information extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Querying%20text%20databases%20for%20efficient%20information%20extraction&rft.btitle=Proceedings%2019th%20International%20Conference%20on%20Data%20Engineering%20(Cat.%20No.03CH37405)&rft.au=Agichtein,%20E.&rft.date=2003&rft.spage=113&rft.epage=124&rft.pages=113-124&rft.isbn=9780780376656&rft.isbn_list=078037665X&rft_id=info:doi/10.1109/ICDE.2003.1260786&rft_dat=%3Cieee_6IE%3E1260786%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1260786&rfr_iscdi=true |