Equisolvability of series vs. controller's topology in synchronous language equations
Given a plant MA and a specification M/sub C/, the largest solution of the FSM equation M/sub X/ /spl middot/ M/sub A/ /spl les/ M/sub C/ contains all possible discrete controllers M/sub X/. Often we are interested in computing the complete solutions whose composition with the plant is exactly equiv...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1155 |
---|---|
container_issue | |
container_start_page | 1154 |
container_title | |
container_volume | |
creator | Yevtushenko, N. Villa, T. Brayton, R.K. Petrenko, A. Sangiovanni-Vincentelli, A.L. |
description | Given a plant MA and a specification M/sub C/, the largest solution of the FSM equation M/sub X/ /spl middot/ M/sub A/ /spl les/ M/sub C/ contains all possible discrete controllers M/sub X/. Often we are interested in computing the complete solutions whose composition with the plant is exactly equivalent to the specification. Not every solution contained in the largest one satisfies such property, that holds instead for the complete solutions of the series topology. We study the relation between the solvability of an equation for the series topology and of the corresponding equation for the controller's topology. We establish that, if M/sub A/ is a deterministic FSM, then the FSM equation M/sub X/ /spl middot/ M/sub A/ /spl les/ M/sub C/ is solvable for the series topology with an unknown head component iff it is solvable for the controller's topology. Our proof is constructive, i.e., for a given solution M/sub B/ of the series topology it shows how to build a solution M/sub D/ of the controller's topology and vice versa. |
doi_str_mv | 10.1109/DATE.2003.1253778 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1253778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1253778</ieee_id><sourcerecordid>1253778</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-80da26cf31b44cdabeb9aec57c8007a2783da0ae1d496e046c41b05c114bf09f3</originalsourceid><addsrcrecordid>eNotkL1OwzAYRS1-JErpAyAWb0wJ3xfbcTxWJfxIlVjCXDmOE4xM3MZJpbw9RfQsdzjSHQ4h9wgpIqin53VVphkASzETTMrigixQiCI5WbwktyBzJbCQkF39CQYJCoU3ZBXjN5xgimPOFuSzPEwuBn_UtfNunGloabSDs5EeY0pN6McheG-Hx0jHsA8-dDN1PY1zb76G0IcpUq_7btKdpfYw6dGFPt6R61b7aFfnXZLqpaw2b8n24_V9s94mTsGYFNDoLDctw5pz0-ja1kpbI6QpAKTOZMEaDdpiw1VugeeGYw3CIPK6BdWyJXn4v3XW2t1-cD96mHfnIOwXE59UnQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Equisolvability of series vs. controller's topology in synchronous language equations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yevtushenko, N. ; Villa, T. ; Brayton, R.K. ; Petrenko, A. ; Sangiovanni-Vincentelli, A.L.</creator><creatorcontrib>Yevtushenko, N. ; Villa, T. ; Brayton, R.K. ; Petrenko, A. ; Sangiovanni-Vincentelli, A.L.</creatorcontrib><description>Given a plant MA and a specification M/sub C/, the largest solution of the FSM equation M/sub X/ /spl middot/ M/sub A/ /spl les/ M/sub C/ contains all possible discrete controllers M/sub X/. Often we are interested in computing the complete solutions whose composition with the plant is exactly equivalent to the specification. Not every solution contained in the largest one satisfies such property, that holds instead for the complete solutions of the series topology. We study the relation between the solvability of an equation for the series topology and of the corresponding equation for the controller's topology. We establish that, if M/sub A/ is a deterministic FSM, then the FSM equation M/sub X/ /spl middot/ M/sub A/ /spl les/ M/sub C/ is solvable for the series topology with an unknown head component iff it is solvable for the controller's topology. Our proof is constructive, i.e., for a given solution M/sub B/ of the series topology it shows how to build a solution M/sub D/ of the controller's topology and vice versa.</description><identifier>ISSN: 1530-1591</identifier><identifier>ISBN: 0769518702</identifier><identifier>ISBN: 9780769518701</identifier><identifier>EISSN: 1558-1101</identifier><identifier>DOI: 10.1109/DATE.2003.1253778</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automata ; Context modeling ; Control system synthesis ; Control systems ; Equations ; Logic design ; Magnetic heads ; Supervisory control ; Tail ; Topology</subject><ispartof>2003 Design, Automation and Test in Europe Conference and Exhibition, 2003, p.1154-1155</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1253778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1253778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yevtushenko, N.</creatorcontrib><creatorcontrib>Villa, T.</creatorcontrib><creatorcontrib>Brayton, R.K.</creatorcontrib><creatorcontrib>Petrenko, A.</creatorcontrib><creatorcontrib>Sangiovanni-Vincentelli, A.L.</creatorcontrib><title>Equisolvability of series vs. controller's topology in synchronous language equations</title><title>2003 Design, Automation and Test in Europe Conference and Exhibition</title><addtitle>DATE</addtitle><description>Given a plant MA and a specification M/sub C/, the largest solution of the FSM equation M/sub X/ /spl middot/ M/sub A/ /spl les/ M/sub C/ contains all possible discrete controllers M/sub X/. Often we are interested in computing the complete solutions whose composition with the plant is exactly equivalent to the specification. Not every solution contained in the largest one satisfies such property, that holds instead for the complete solutions of the series topology. We study the relation between the solvability of an equation for the series topology and of the corresponding equation for the controller's topology. We establish that, if M/sub A/ is a deterministic FSM, then the FSM equation M/sub X/ /spl middot/ M/sub A/ /spl les/ M/sub C/ is solvable for the series topology with an unknown head component iff it is solvable for the controller's topology. Our proof is constructive, i.e., for a given solution M/sub B/ of the series topology it shows how to build a solution M/sub D/ of the controller's topology and vice versa.</description><subject>Automata</subject><subject>Context modeling</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Equations</subject><subject>Logic design</subject><subject>Magnetic heads</subject><subject>Supervisory control</subject><subject>Tail</subject><subject>Topology</subject><issn>1530-1591</issn><issn>1558-1101</issn><isbn>0769518702</isbn><isbn>9780769518701</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkL1OwzAYRS1-JErpAyAWb0wJ3xfbcTxWJfxIlVjCXDmOE4xM3MZJpbw9RfQsdzjSHQ4h9wgpIqin53VVphkASzETTMrigixQiCI5WbwktyBzJbCQkF39CQYJCoU3ZBXjN5xgimPOFuSzPEwuBn_UtfNunGloabSDs5EeY0pN6McheG-Hx0jHsA8-dDN1PY1zb76G0IcpUq_7btKdpfYw6dGFPt6R61b7aFfnXZLqpaw2b8n24_V9s94mTsGYFNDoLDctw5pz0-ja1kpbI6QpAKTOZMEaDdpiw1VugeeGYw3CIPK6BdWyJXn4v3XW2t1-cD96mHfnIOwXE59UnQ</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Yevtushenko, N.</creator><creator>Villa, T.</creator><creator>Brayton, R.K.</creator><creator>Petrenko, A.</creator><creator>Sangiovanni-Vincentelli, A.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Equisolvability of series vs. controller's topology in synchronous language equations</title><author>Yevtushenko, N. ; Villa, T. ; Brayton, R.K. ; Petrenko, A. ; Sangiovanni-Vincentelli, A.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-80da26cf31b44cdabeb9aec57c8007a2783da0ae1d496e046c41b05c114bf09f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Automata</topic><topic>Context modeling</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Equations</topic><topic>Logic design</topic><topic>Magnetic heads</topic><topic>Supervisory control</topic><topic>Tail</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Yevtushenko, N.</creatorcontrib><creatorcontrib>Villa, T.</creatorcontrib><creatorcontrib>Brayton, R.K.</creatorcontrib><creatorcontrib>Petrenko, A.</creatorcontrib><creatorcontrib>Sangiovanni-Vincentelli, A.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yevtushenko, N.</au><au>Villa, T.</au><au>Brayton, R.K.</au><au>Petrenko, A.</au><au>Sangiovanni-Vincentelli, A.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Equisolvability of series vs. controller's topology in synchronous language equations</atitle><btitle>2003 Design, Automation and Test in Europe Conference and Exhibition</btitle><stitle>DATE</stitle><date>2003</date><risdate>2003</risdate><spage>1154</spage><epage>1155</epage><pages>1154-1155</pages><issn>1530-1591</issn><eissn>1558-1101</eissn><isbn>0769518702</isbn><isbn>9780769518701</isbn><abstract>Given a plant MA and a specification M/sub C/, the largest solution of the FSM equation M/sub X/ /spl middot/ M/sub A/ /spl les/ M/sub C/ contains all possible discrete controllers M/sub X/. Often we are interested in computing the complete solutions whose composition with the plant is exactly equivalent to the specification. Not every solution contained in the largest one satisfies such property, that holds instead for the complete solutions of the series topology. We study the relation between the solvability of an equation for the series topology and of the corresponding equation for the controller's topology. We establish that, if M/sub A/ is a deterministic FSM, then the FSM equation M/sub X/ /spl middot/ M/sub A/ /spl les/ M/sub C/ is solvable for the series topology with an unknown head component iff it is solvable for the controller's topology. Our proof is constructive, i.e., for a given solution M/sub B/ of the series topology it shows how to build a solution M/sub D/ of the controller's topology and vice versa.</abstract><pub>IEEE</pub><doi>10.1109/DATE.2003.1253778</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-1591 |
ispartof | 2003 Design, Automation and Test in Europe Conference and Exhibition, 2003, p.1154-1155 |
issn | 1530-1591 1558-1101 |
language | eng |
recordid | cdi_ieee_primary_1253778 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automata Context modeling Control system synthesis Control systems Equations Logic design Magnetic heads Supervisory control Tail Topology |
title | Equisolvability of series vs. controller's topology in synchronous language equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Equisolvability%20of%20series%20vs.%20controller's%20topology%20in%20synchronous%20language%20equations&rft.btitle=2003%20Design,%20Automation%20and%20Test%20in%20Europe%20Conference%20and%20Exhibition&rft.au=Yevtushenko,%20N.&rft.date=2003&rft.spage=1154&rft.epage=1155&rft.pages=1154-1155&rft.issn=1530-1591&rft.eissn=1558-1101&rft.isbn=0769518702&rft.isbn_list=9780769518701&rft_id=info:doi/10.1109/DATE.2003.1253778&rft_dat=%3Cieee_6IE%3E1253778%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1253778&rfr_iscdi=true |