Shape-based pedestrian detection and localization

This work presents a vision-based system for detecting and localizing pedestrians in road environments by means of a statistical technique. Initially, attentive vision techniques relying on the search for specific characteristics of pedestrians such as vertical symmetry and strong presence of edges,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bertozzi, M., Broggi, A., Chapuis, R., Chausse, F., Fascioli, A., Tibaldi, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333 vol.1
container_issue
container_start_page 328
container_title
container_volume 1
creator Bertozzi, M.
Broggi, A.
Chapuis, R.
Chausse, F.
Fascioli, A.
Tibaldi, A.
description This work presents a vision-based system for detecting and localizing pedestrians in road environments by means of a statistical technique. Initially, attentive vision techniques relying on the search for specific characteristics of pedestrians such as vertical symmetry and strong presence of edges, allow to select interesting regions likely to contain pedestrians. These regions are then used to estimate the localization of pedestrians using a Kalman filter estimator.
doi_str_mv 10.1109/ITSC.2003.1251972
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1251972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1251972</ieee_id><sourcerecordid>1251972</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-5217e42a05e22388748e205df800ff51bb8c4ce2b451b6ba999befff050b6d8b3</originalsourceid><addsrcrecordid>eNotj81qwzAQhAWlkJL6AUoufgG7u_qJpWMx_QkEckh6DitrRVVcx1i-tE9fl2YYmOE7DIwQDwg1IrjH3enY1hJA1SgNukbeiMI1FhYruyC9EkXOn7BIOaPQ3Qk8ftDIlafMoRw5cJ6nREMZeOZuTpehpCGU_aWjPv3QH7gXt5H6zMU11-L95fnUvlX7w-uufdpXSaKdKyOxYS0JDEuprG20ZQkmRAsQo0Hvbac7ll4vfevJOec5xggG_DZYr9Zi87-bmPk8TumLpu_z9Zj6BbyqQxs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shape-based pedestrian detection and localization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bertozzi, M. ; Broggi, A. ; Chapuis, R. ; Chausse, F. ; Fascioli, A. ; Tibaldi, A.</creator><creatorcontrib>Bertozzi, M. ; Broggi, A. ; Chapuis, R. ; Chausse, F. ; Fascioli, A. ; Tibaldi, A.</creatorcontrib><description>This work presents a vision-based system for detecting and localizing pedestrians in road environments by means of a statistical technique. Initially, attentive vision techniques relying on the search for specific characteristics of pedestrians such as vertical symmetry and strong presence of edges, allow to select interesting regions likely to contain pedestrians. These regions are then used to estimate the localization of pedestrians using a Kalman filter estimator.</description><identifier>ISBN: 9780780381254</identifier><identifier>ISBN: 0780381254</identifier><identifier>DOI: 10.1109/ITSC.2003.1251972</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Color ; Intelligent vehicles ; Layout ; Machine vision ; Motion detection ; Roads ; Shape ; Vehicle crash testing ; Vehicle detection</subject><ispartof>Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems, 2003, Vol.1, p.328-333 vol.1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1251972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1251972$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bertozzi, M.</creatorcontrib><creatorcontrib>Broggi, A.</creatorcontrib><creatorcontrib>Chapuis, R.</creatorcontrib><creatorcontrib>Chausse, F.</creatorcontrib><creatorcontrib>Fascioli, A.</creatorcontrib><creatorcontrib>Tibaldi, A.</creatorcontrib><title>Shape-based pedestrian detection and localization</title><title>Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems</title><addtitle>ITSC</addtitle><description>This work presents a vision-based system for detecting and localizing pedestrians in road environments by means of a statistical technique. Initially, attentive vision techniques relying on the search for specific characteristics of pedestrians such as vertical symmetry and strong presence of edges, allow to select interesting regions likely to contain pedestrians. These regions are then used to estimate the localization of pedestrians using a Kalman filter estimator.</description><subject>Cameras</subject><subject>Color</subject><subject>Intelligent vehicles</subject><subject>Layout</subject><subject>Machine vision</subject><subject>Motion detection</subject><subject>Roads</subject><subject>Shape</subject><subject>Vehicle crash testing</subject><subject>Vehicle detection</subject><isbn>9780780381254</isbn><isbn>0780381254</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81qwzAQhAWlkJL6AUoufgG7u_qJpWMx_QkEckh6DitrRVVcx1i-tE9fl2YYmOE7DIwQDwg1IrjH3enY1hJA1SgNukbeiMI1FhYruyC9EkXOn7BIOaPQ3Qk8ftDIlafMoRw5cJ6nREMZeOZuTpehpCGU_aWjPv3QH7gXt5H6zMU11-L95fnUvlX7w-uufdpXSaKdKyOxYS0JDEuprG20ZQkmRAsQo0Hvbac7ll4vfevJOec5xggG_DZYr9Zi87-bmPk8TumLpu_z9Zj6BbyqQxs</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Bertozzi, M.</creator><creator>Broggi, A.</creator><creator>Chapuis, R.</creator><creator>Chausse, F.</creator><creator>Fascioli, A.</creator><creator>Tibaldi, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Shape-based pedestrian detection and localization</title><author>Bertozzi, M. ; Broggi, A. ; Chapuis, R. ; Chausse, F. ; Fascioli, A. ; Tibaldi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-5217e42a05e22388748e205df800ff51bb8c4ce2b451b6ba999befff050b6d8b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Cameras</topic><topic>Color</topic><topic>Intelligent vehicles</topic><topic>Layout</topic><topic>Machine vision</topic><topic>Motion detection</topic><topic>Roads</topic><topic>Shape</topic><topic>Vehicle crash testing</topic><topic>Vehicle detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Bertozzi, M.</creatorcontrib><creatorcontrib>Broggi, A.</creatorcontrib><creatorcontrib>Chapuis, R.</creatorcontrib><creatorcontrib>Chausse, F.</creatorcontrib><creatorcontrib>Fascioli, A.</creatorcontrib><creatorcontrib>Tibaldi, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bertozzi, M.</au><au>Broggi, A.</au><au>Chapuis, R.</au><au>Chausse, F.</au><au>Fascioli, A.</au><au>Tibaldi, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shape-based pedestrian detection and localization</atitle><btitle>Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems</btitle><stitle>ITSC</stitle><date>2003</date><risdate>2003</risdate><volume>1</volume><spage>328</spage><epage>333 vol.1</epage><pages>328-333 vol.1</pages><isbn>9780780381254</isbn><isbn>0780381254</isbn><abstract>This work presents a vision-based system for detecting and localizing pedestrians in road environments by means of a statistical technique. Initially, attentive vision techniques relying on the search for specific characteristics of pedestrians such as vertical symmetry and strong presence of edges, allow to select interesting regions likely to contain pedestrians. These regions are then used to estimate the localization of pedestrians using a Kalman filter estimator.</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2003.1251972</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780381254
ispartof Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems, 2003, Vol.1, p.328-333 vol.1
issn
language eng
recordid cdi_ieee_primary_1251972
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Color
Intelligent vehicles
Layout
Machine vision
Motion detection
Roads
Shape
Vehicle crash testing
Vehicle detection
title Shape-based pedestrian detection and localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shape-based%20pedestrian%20detection%20and%20localization&rft.btitle=Proceedings%20of%20the%202003%20IEEE%20International%20Conference%20on%20Intelligent%20Transportation%20Systems&rft.au=Bertozzi,%20M.&rft.date=2003&rft.volume=1&rft.spage=328&rft.epage=333%20vol.1&rft.pages=328-333%20vol.1&rft.isbn=9780780381254&rft.isbn_list=0780381254&rft_id=info:doi/10.1109/ITSC.2003.1251972&rft_dat=%3Cieee_6IE%3E1251972%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1251972&rfr_iscdi=true