Exploring high-D spaces with multiform matrices and small multiples
We introduce an approach to visual analysis of multivariate data that integrates several methods from information visualization, exploratory data analysis (EDA), and geovisualization. The approach leverages the component-based architecture implemented in GeoVISTA Studio to construct a flexible, mult...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | |
container_start_page | 31 |
container_title | |
container_volume | |
creator | MacEachren, A. Xiping, D. Hardisty, F. Diansheng Guo Lengerich, G. |
description | We introduce an approach to visual analysis of multivariate data that integrates several methods from information visualization, exploratory data analysis (EDA), and geovisualization. The approach leverages the component-based architecture implemented in GeoVISTA Studio to construct a flexible, multiview, tightly (but generically) coordinated, EDA toolkit. This toolkit builds upon traditional ideas behind both small multiples and scatterplot matrices in three fundamental ways. First, we develop a general, multiform, bivariate matrix and a complementary multiform, bivariate small multiple plot in which different bivariate representation forms can be used in combination. We demonstrate the flexibility of this approach with matrices and small multiples that depict multivariate data through combinations of: scatterplots, bivariate maps, and space-filling displays. Second, we apply a measure of conditional entropy to (a) identify variables from a high-dimensional data set that are likely to display interesting relationships and (b) generate a default order of these variables in the matrix or small multiple display. Third, we add conditioning, a kind of dynamic query/filtering in which supplementary (undisplayed) variables are used to constrain the view onto variables that are displayed. Conditioning allows the effects of one or more well understood variables to be removed form the analysis, making relationships among remaining variables easier to explore. We illustrate the individual and combined functionality enabled by this approach through application to analysis of cancer diagnosis and mortality data and their associated covariates and risk factors. |
doi_str_mv | 10.1109/INFVIS.2003.1249006 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_1249006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1249006</ieee_id><sourcerecordid>21947129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-60567a6c94677ec87ec24b7f97f5c0d3d488190784a4f162935bdb78927c8663</originalsourceid><addsrcrecordid>eNo9UNtKw0AUXBCxWvsFBdkfSNz75VFiq4GiDxZfy2azaVZ225BNUf_eSKoHDgdmhuHMALDEKMcY6fvyZf1evuUEIZpjwjRC4gLcIKkQVZgzNQOLlD7QOFRzQtgVmBGsmcREX4Ni9dWFY-8Pe9j6fZs9wtQZ6xL89EML4ykMvjn2EUYz9P4XN4capmhCmMguuHQLLhsTkluc7xxs16tt8ZxtXp_K4mGTWcrUkAnEhTTCaiakdFaNS1glGy0bblFNa6YU1uPfzLAGC6Ipr-pKKk2kVULQObibbLtTFV2963ofTf-9-wszCpaTwDvn_ulzJfQHPW1T7g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exploring high-D spaces with multiform matrices and small multiples</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>MacEachren, A. ; Xiping, D. ; Hardisty, F. ; Diansheng Guo ; Lengerich, G.</creator><creatorcontrib>MacEachren, A. ; Xiping, D. ; Hardisty, F. ; Diansheng Guo ; Lengerich, G.</creatorcontrib><description>We introduce an approach to visual analysis of multivariate data that integrates several methods from information visualization, exploratory data analysis (EDA), and geovisualization. The approach leverages the component-based architecture implemented in GeoVISTA Studio to construct a flexible, multiview, tightly (but generically) coordinated, EDA toolkit. This toolkit builds upon traditional ideas behind both small multiples and scatterplot matrices in three fundamental ways. First, we develop a general, multiform, bivariate matrix and a complementary multiform, bivariate small multiple plot in which different bivariate representation forms can be used in combination. We demonstrate the flexibility of this approach with matrices and small multiples that depict multivariate data through combinations of: scatterplots, bivariate maps, and space-filling displays. Second, we apply a measure of conditional entropy to (a) identify variables from a high-dimensional data set that are likely to display interesting relationships and (b) generate a default order of these variables in the matrix or small multiple display. Third, we add conditioning, a kind of dynamic query/filtering in which supplementary (undisplayed) variables are used to constrain the view onto variables that are displayed. Conditioning allows the effects of one or more well understood variables to be removed form the analysis, making relationships among remaining variables easier to explore. We illustrate the individual and combined functionality enabled by this approach through application to analysis of cancer diagnosis and mortality data and their associated covariates and risk factors.</description><identifier>ISBN: 0780381548</identifier><identifier>ISBN: 9780780381544</identifier><identifier>DOI: 10.1109/INFVIS.2003.1249006</identifier><identifier>PMID: 21947129</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cancer ; Data analysis ; Data visualization ; Displays ; Electronic design automation and methodology ; Entropy ; Filtering ; Information analysis ; Scattering ; Space exploration</subject><ispartof>IEEE Conference on Information Visualization : an International Conference on Computer Visualization & Graphics, proceedings ... IEEE Conference on Information Visualization, 2003, p.31-38</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-60567a6c94677ec87ec24b7f97f5c0d3d488190784a4f162935bdb78927c8663</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1249006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1249006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21947129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacEachren, A.</creatorcontrib><creatorcontrib>Xiping, D.</creatorcontrib><creatorcontrib>Hardisty, F.</creatorcontrib><creatorcontrib>Diansheng Guo</creatorcontrib><creatorcontrib>Lengerich, G.</creatorcontrib><title>Exploring high-D spaces with multiform matrices and small multiples</title><title>IEEE Conference on Information Visualization : an International Conference on Computer Visualization & Graphics, proceedings ... IEEE Conference on Information Visualization</title><addtitle>INFVIS</addtitle><addtitle>IEEE Conf Inf Vis</addtitle><description>We introduce an approach to visual analysis of multivariate data that integrates several methods from information visualization, exploratory data analysis (EDA), and geovisualization. The approach leverages the component-based architecture implemented in GeoVISTA Studio to construct a flexible, multiview, tightly (but generically) coordinated, EDA toolkit. This toolkit builds upon traditional ideas behind both small multiples and scatterplot matrices in three fundamental ways. First, we develop a general, multiform, bivariate matrix and a complementary multiform, bivariate small multiple plot in which different bivariate representation forms can be used in combination. We demonstrate the flexibility of this approach with matrices and small multiples that depict multivariate data through combinations of: scatterplots, bivariate maps, and space-filling displays. Second, we apply a measure of conditional entropy to (a) identify variables from a high-dimensional data set that are likely to display interesting relationships and (b) generate a default order of these variables in the matrix or small multiple display. Third, we add conditioning, a kind of dynamic query/filtering in which supplementary (undisplayed) variables are used to constrain the view onto variables that are displayed. Conditioning allows the effects of one or more well understood variables to be removed form the analysis, making relationships among remaining variables easier to explore. We illustrate the individual and combined functionality enabled by this approach through application to analysis of cancer diagnosis and mortality data and their associated covariates and risk factors.</description><subject>Cancer</subject><subject>Data analysis</subject><subject>Data visualization</subject><subject>Displays</subject><subject>Electronic design automation and methodology</subject><subject>Entropy</subject><subject>Filtering</subject><subject>Information analysis</subject><subject>Scattering</subject><subject>Space exploration</subject><isbn>0780381548</isbn><isbn>9780780381544</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UNtKw0AUXBCxWvsFBdkfSNz75VFiq4GiDxZfy2azaVZ225BNUf_eSKoHDgdmhuHMALDEKMcY6fvyZf1evuUEIZpjwjRC4gLcIKkQVZgzNQOLlD7QOFRzQtgVmBGsmcREX4Ni9dWFY-8Pe9j6fZs9wtQZ6xL89EML4ykMvjn2EUYz9P4XN4capmhCmMguuHQLLhsTkluc7xxs16tt8ZxtXp_K4mGTWcrUkAnEhTTCaiakdFaNS1glGy0bblFNa6YU1uPfzLAGC6Ipr-pKKk2kVULQObibbLtTFV2963ofTf-9-wszCpaTwDvn_ulzJfQHPW1T7g</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>MacEachren, A.</creator><creator>Xiping, D.</creator><creator>Hardisty, F.</creator><creator>Diansheng Guo</creator><creator>Lengerich, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>NPM</scope></search><sort><creationdate>2003</creationdate><title>Exploring high-D spaces with multiform matrices and small multiples</title><author>MacEachren, A. ; Xiping, D. ; Hardisty, F. ; Diansheng Guo ; Lengerich, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-60567a6c94677ec87ec24b7f97f5c0d3d488190784a4f162935bdb78927c8663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Cancer</topic><topic>Data analysis</topic><topic>Data visualization</topic><topic>Displays</topic><topic>Electronic design automation and methodology</topic><topic>Entropy</topic><topic>Filtering</topic><topic>Information analysis</topic><topic>Scattering</topic><topic>Space exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>MacEachren, A.</creatorcontrib><creatorcontrib>Xiping, D.</creatorcontrib><creatorcontrib>Hardisty, F.</creatorcontrib><creatorcontrib>Diansheng Guo</creatorcontrib><creatorcontrib>Lengerich, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MacEachren, A.</au><au>Xiping, D.</au><au>Hardisty, F.</au><au>Diansheng Guo</au><au>Lengerich, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exploring high-D spaces with multiform matrices and small multiples</atitle><btitle>IEEE Conference on Information Visualization : an International Conference on Computer Visualization & Graphics, proceedings ... IEEE Conference on Information Visualization</btitle><stitle>INFVIS</stitle><addtitle>IEEE Conf Inf Vis</addtitle><date>2003</date><risdate>2003</risdate><spage>31</spage><epage>38</epage><pages>31-38</pages><isbn>0780381548</isbn><isbn>9780780381544</isbn><abstract>We introduce an approach to visual analysis of multivariate data that integrates several methods from information visualization, exploratory data analysis (EDA), and geovisualization. The approach leverages the component-based architecture implemented in GeoVISTA Studio to construct a flexible, multiview, tightly (but generically) coordinated, EDA toolkit. This toolkit builds upon traditional ideas behind both small multiples and scatterplot matrices in three fundamental ways. First, we develop a general, multiform, bivariate matrix and a complementary multiform, bivariate small multiple plot in which different bivariate representation forms can be used in combination. We demonstrate the flexibility of this approach with matrices and small multiples that depict multivariate data through combinations of: scatterplots, bivariate maps, and space-filling displays. Second, we apply a measure of conditional entropy to (a) identify variables from a high-dimensional data set that are likely to display interesting relationships and (b) generate a default order of these variables in the matrix or small multiple display. Third, we add conditioning, a kind of dynamic query/filtering in which supplementary (undisplayed) variables are used to constrain the view onto variables that are displayed. Conditioning allows the effects of one or more well understood variables to be removed form the analysis, making relationships among remaining variables easier to explore. We illustrate the individual and combined functionality enabled by this approach through application to analysis of cancer diagnosis and mortality data and their associated covariates and risk factors.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21947129</pmid><doi>10.1109/INFVIS.2003.1249006</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780381548 |
ispartof | IEEE Conference on Information Visualization : an International Conference on Computer Visualization & Graphics, proceedings ... IEEE Conference on Information Visualization, 2003, p.31-38 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1249006 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cancer Data analysis Data visualization Displays Electronic design automation and methodology Entropy Filtering Information analysis Scattering Space exploration |
title | Exploring high-D spaces with multiform matrices and small multiples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exploring%20high-D%20spaces%20with%20multiform%20matrices%20and%20small%20multiples&rft.btitle=IEEE%20Conference%20on%20Information%20Visualization%20:%20an%20International%20Conference%20on%20Computer%20Visualization%20&%20Graphics,%20proceedings%20...%20IEEE%20Conference%20on%20Information%20Visualization&rft.au=MacEachren,%20A.&rft.date=2003&rft.spage=31&rft.epage=38&rft.pages=31-38&rft.isbn=0780381548&rft.isbn_list=9780780381544&rft_id=info:doi/10.1109/INFVIS.2003.1249006&rft_dat=%3Cpubmed_6IE%3E21947129%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21947129&rft_ieee_id=1249006&rfr_iscdi=true |