Predicting worst-case charge buildup in power-device field oxides

Existing models for worst-case charge buildup in silicon dioxide are applied to single- and two-level field plate termination structures in n-channel power MOSFETs. It is shown that the field-collapse model, when properly applied to these termination structures, provides excellent agreement between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States) 1991-12, Vol.38 (6), p.1383-1390
Hauptverfasser: Kosier, S.L., Schrimpf, R.D., Galloway, K.F., Cellier, F.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1390
container_issue 6
container_start_page 1383
container_title IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States)
container_volume 38
creator Kosier, S.L.
Schrimpf, R.D.
Galloway, K.F.
Cellier, F.E.
description Existing models for worst-case charge buildup in silicon dioxide are applied to single- and two-level field plate termination structures in n-channel power MOSFETs. It is shown that the field-collapse model, when properly applied to these termination structures, provides excellent agreement between experimental and simulation worst-case breakdown-voltage degradation results. Nonuniform charge buildup in the termination structure field oxide is identified, and two methods of doing device simulation that take the nonuniformity into account are introduced. Finally, simple analytical models are presented that enable the nonuniform charge distribution to be calculated for any field-plate structure.< >
doi_str_mv 10.1109/23.124121
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_124121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>124121</ieee_id><sourcerecordid>28511386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-7f10368e74a87573fa708cce5f51facf1a65f2c3fa443d6185b5dd7bb776675f3</originalsourceid><addsrcrecordid>eNqN0E1LxDAQgOEgCq6rB6-eiojgoZppmo8eF_ELFvSg55CdTjRS2zXpuvrvrXTRq6chw5P3MIwdAj8H4NVFIc6hKKGALTYBKU0OUpttNuEcTF6VVbXL9lJ6HZ6l5HLCZg-R6oB9aJ-zdRdTn6NLlOGLi8-ULVahqVfLLLTZsltTzGv6CEiZD9TUWfcZakr7bMe7JtHBZk7Z0_XV4-VtPr-_ubuczXMUquxz7YELZUiXzmiphXeaG0SSXoJ36MEp6Qsc9mUpagVGLmRd68VCa6W09GLKjsdul_pgE4ae8AW7tiXsrTSF4qAGdDqiZezeV5R6-xYSUtO4lrpVsoXRWlTS_ANKAGF-imcjxNilFMnbZQxvLn5Z4Pbn5LYQdjz5YE82UZfQNT66FkP6_SBBlbwqBnY0skBEf7mx8Q1EO4by</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28511386</pqid></control><display><type>article</type><title>Predicting worst-case charge buildup in power-device field oxides</title><source>IEEE Electronic Library (IEL)</source><creator>Kosier, S.L. ; Schrimpf, R.D. ; Galloway, K.F. ; Cellier, F.E.</creator><creatorcontrib>Kosier, S.L. ; Schrimpf, R.D. ; Galloway, K.F. ; Cellier, F.E.</creatorcontrib><description>Existing models for worst-case charge buildup in silicon dioxide are applied to single- and two-level field plate termination structures in n-channel power MOSFETs. It is shown that the field-collapse model, when properly applied to these termination structures, provides excellent agreement between experimental and simulation worst-case breakdown-voltage degradation results. Nonuniform charge buildup in the termination structure field oxide is identified, and two methods of doing device simulation that take the nonuniformity into account are introduced. Finally, simple analytical models are presented that enable the nonuniform charge distribution to be calculated for any field-plate structure.&lt; &gt;</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/23.124121</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>426000 -- Engineering-- Components, Electron Devices &amp; Circuits-- (1990-) ; Analytical models ; Applied sciences ; BREAKDOWN ; Breakdown voltage ; CHALCOGENIDES ; CHARGE COLLECTION ; Computational modeling ; Degradation ; Electronics ; ENGINEERING ; Exact sciences and technology ; FIELD EFFECT TRANSISTORS ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Ionizing radiation ; MINERALS ; MOS TRANSISTORS ; MOSFET ; MOSFETs ; Other multijunction devices. Power transistors. Thyristors ; OXIDE MINERALS ; OXIDES ; OXYGEN COMPOUNDS ; Process design ; RADIATION EFFECTS ; Radiation hardening ; SEMICONDUCTOR DEVICES ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductor films ; SILICA ; SILICON COMPOUNDS ; SILICON OXIDES ; SIMULATION ; TRANSISTORS 440200 -- Radiation Effects on Instrument Components, Instruments, or Electronic Systems</subject><ispartof>IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States), 1991-12, Vol.38 (6), p.1383-1390</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-7f10368e74a87573fa708cce5f51facf1a65f2c3fa443d6185b5dd7bb776675f3</citedby><cites>FETCH-LOGICAL-c364t-7f10368e74a87573fa708cce5f51facf1a65f2c3fa443d6185b5dd7bb776675f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/124121$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,792,881,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/124121$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5164092$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5826016$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosier, S.L.</creatorcontrib><creatorcontrib>Schrimpf, R.D.</creatorcontrib><creatorcontrib>Galloway, K.F.</creatorcontrib><creatorcontrib>Cellier, F.E.</creatorcontrib><title>Predicting worst-case charge buildup in power-device field oxides</title><title>IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States)</title><addtitle>TNS</addtitle><description>Existing models for worst-case charge buildup in silicon dioxide are applied to single- and two-level field plate termination structures in n-channel power MOSFETs. It is shown that the field-collapse model, when properly applied to these termination structures, provides excellent agreement between experimental and simulation worst-case breakdown-voltage degradation results. Nonuniform charge buildup in the termination structure field oxide is identified, and two methods of doing device simulation that take the nonuniformity into account are introduced. Finally, simple analytical models are presented that enable the nonuniform charge distribution to be calculated for any field-plate structure.&lt; &gt;</description><subject>426000 -- Engineering-- Components, Electron Devices &amp; Circuits-- (1990-)</subject><subject>Analytical models</subject><subject>Applied sciences</subject><subject>BREAKDOWN</subject><subject>Breakdown voltage</subject><subject>CHALCOGENIDES</subject><subject>CHARGE COLLECTION</subject><subject>Computational modeling</subject><subject>Degradation</subject><subject>Electronics</subject><subject>ENGINEERING</subject><subject>Exact sciences and technology</subject><subject>FIELD EFFECT TRANSISTORS</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Ionizing radiation</subject><subject>MINERALS</subject><subject>MOS TRANSISTORS</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Other multijunction devices. Power transistors. Thyristors</subject><subject>OXIDE MINERALS</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>Process design</subject><subject>RADIATION EFFECTS</subject><subject>Radiation hardening</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductor films</subject><subject>SILICA</subject><subject>SILICON COMPOUNDS</subject><subject>SILICON OXIDES</subject><subject>SIMULATION</subject><subject>TRANSISTORS 440200 -- Radiation Effects on Instrument Components, Instruments, or Electronic Systems</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LxDAQgOEgCq6rB6-eiojgoZppmo8eF_ELFvSg55CdTjRS2zXpuvrvrXTRq6chw5P3MIwdAj8H4NVFIc6hKKGALTYBKU0OUpttNuEcTF6VVbXL9lJ6HZ6l5HLCZg-R6oB9aJ-zdRdTn6NLlOGLi8-ULVahqVfLLLTZsltTzGv6CEiZD9TUWfcZakr7bMe7JtHBZk7Z0_XV4-VtPr-_ubuczXMUquxz7YELZUiXzmiphXeaG0SSXoJ36MEp6Qsc9mUpagVGLmRd68VCa6W09GLKjsdul_pgE4ae8AW7tiXsrTSF4qAGdDqiZezeV5R6-xYSUtO4lrpVsoXRWlTS_ANKAGF-imcjxNilFMnbZQxvLn5Z4Pbn5LYQdjz5YE82UZfQNT66FkP6_SBBlbwqBnY0skBEf7mx8Q1EO4by</recordid><startdate>19911201</startdate><enddate>19911201</enddate><creator>Kosier, S.L.</creator><creator>Schrimpf, R.D.</creator><creator>Galloway, K.F.</creator><creator>Cellier, F.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>19911201</creationdate><title>Predicting worst-case charge buildup in power-device field oxides</title><author>Kosier, S.L. ; Schrimpf, R.D. ; Galloway, K.F. ; Cellier, F.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-7f10368e74a87573fa708cce5f51facf1a65f2c3fa443d6185b5dd7bb776675f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>426000 -- Engineering-- Components, Electron Devices &amp; Circuits-- (1990-)</topic><topic>Analytical models</topic><topic>Applied sciences</topic><topic>BREAKDOWN</topic><topic>Breakdown voltage</topic><topic>CHALCOGENIDES</topic><topic>CHARGE COLLECTION</topic><topic>Computational modeling</topic><topic>Degradation</topic><topic>Electronics</topic><topic>ENGINEERING</topic><topic>Exact sciences and technology</topic><topic>FIELD EFFECT TRANSISTORS</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Ionizing radiation</topic><topic>MINERALS</topic><topic>MOS TRANSISTORS</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Other multijunction devices. Power transistors. Thyristors</topic><topic>OXIDE MINERALS</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>Process design</topic><topic>RADIATION EFFECTS</topic><topic>Radiation hardening</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductor films</topic><topic>SILICA</topic><topic>SILICON COMPOUNDS</topic><topic>SILICON OXIDES</topic><topic>SIMULATION</topic><topic>TRANSISTORS 440200 -- Radiation Effects on Instrument Components, Instruments, or Electronic Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosier, S.L.</creatorcontrib><creatorcontrib>Schrimpf, R.D.</creatorcontrib><creatorcontrib>Galloway, K.F.</creatorcontrib><creatorcontrib>Cellier, F.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kosier, S.L.</au><au>Schrimpf, R.D.</au><au>Galloway, K.F.</au><au>Cellier, F.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting worst-case charge buildup in power-device field oxides</atitle><jtitle>IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States)</jtitle><stitle>TNS</stitle><date>1991-12-01</date><risdate>1991</risdate><volume>38</volume><issue>6</issue><spage>1383</spage><epage>1390</epage><pages>1383-1390</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Existing models for worst-case charge buildup in silicon dioxide are applied to single- and two-level field plate termination structures in n-channel power MOSFETs. It is shown that the field-collapse model, when properly applied to these termination structures, provides excellent agreement between experimental and simulation worst-case breakdown-voltage degradation results. Nonuniform charge buildup in the termination structure field oxide is identified, and two methods of doing device simulation that take the nonuniformity into account are introduced. Finally, simple analytical models are presented that enable the nonuniform charge distribution to be calculated for any field-plate structure.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/23.124121</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States), 1991-12, Vol.38 (6), p.1383-1390
issn 0018-9499
1558-1578
language eng
recordid cdi_ieee_primary_124121
source IEEE Electronic Library (IEL)
subjects 426000 -- Engineering-- Components, Electron Devices & Circuits-- (1990-)
Analytical models
Applied sciences
BREAKDOWN
Breakdown voltage
CHALCOGENIDES
CHARGE COLLECTION
Computational modeling
Degradation
Electronics
ENGINEERING
Exact sciences and technology
FIELD EFFECT TRANSISTORS
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Ionizing radiation
MINERALS
MOS TRANSISTORS
MOSFET
MOSFETs
Other multijunction devices. Power transistors. Thyristors
OXIDE MINERALS
OXIDES
OXYGEN COMPOUNDS
Process design
RADIATION EFFECTS
Radiation hardening
SEMICONDUCTOR DEVICES
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductor films
SILICA
SILICON COMPOUNDS
SILICON OXIDES
SIMULATION
TRANSISTORS 440200 -- Radiation Effects on Instrument Components, Instruments, or Electronic Systems
title Predicting worst-case charge buildup in power-device field oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20worst-case%20charge%20buildup%20in%20power-device%20field%20oxides&rft.jtitle=IEEE%20Transactions%20on%20Nuclear%20Science%20(Institute%20of%20Electrical%20and%20Electronics%20Engineers);%20(United%20States)&rft.au=Kosier,%20S.L.&rft.date=1991-12-01&rft.volume=38&rft.issue=6&rft.spage=1383&rft.epage=1390&rft.pages=1383-1390&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/23.124121&rft_dat=%3Cproquest_RIE%3E28511386%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28511386&rft_id=info:pmid/&rft_ieee_id=124121&rfr_iscdi=true