Enhanced, robust genetic algorithms for multiview range image registration

We present a new method for precise registration of multiple range images with low overlap based on genetic algorithms (GAs). The proposed method minimizes the alignment error within the common overlap area among a set of views, which is computed by a novel robust evaluation metric, called the surfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Silva, L., Bellon, O.R.P., Boyer, K.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue
container_start_page 268
container_title
container_volume
creator Silva, L.
Bellon, O.R.P.
Boyer, K.L.
description We present a new method for precise registration of multiple range images with low overlap based on genetic algorithms (GAs). The proposed method minimizes the alignment error within the common overlap area among a set of views, which is computed by a novel robust evaluation metric, called the surface interpenetration measure. Because they search in a space of transformations, GAs are capable of registering surfaces without need for prealignment, as opposed to methods based on the iterative closest point (ICP) algorithm, the most popular to date. The experimental results confirm that the new method ensures more precise alignments than combined sequential pairwise alignments for multiview registration, providing accurate global alignment among overlapping views.
doi_str_mv 10.1109/IM.2003.1240259
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1240259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1240259</ieee_id><sourcerecordid>1240259</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e70002bdc02bbbd6ff2e2651c0a8fd0c2753783dd4c8b28baca083de4d559db3</originalsourceid><addsrcrecordid>eNotT0tLAzEYDIig1D178JIf4K55bDbJUUrVloqX3kse324j-5AkVfz3BuwcZpjLPBC6p6ShlOin7XvDCOENZS1hQl-hSktFZKcF1ZryG1Sl9EkKuOatVrdot5lPZnbgH3Fc7DllPMAMOThsxmGJIZ-mhPsl4uk85vAd4AdHMw-Aw2QKRxhCytHksMx36Lo3Y4Lqoit0eNkc1m_1_uN1u37e14FKkWuQpZ5Z7wpZ67u-Z8A6QR0xqvfEMSm4VNz71inLlDXOkGKh9UJob_kKPfzHBgA4fsUyJP4eL4f5H6FTTJ4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Enhanced, robust genetic algorithms for multiview range image registration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Silva, L. ; Bellon, O.R.P. ; Boyer, K.L.</creator><creatorcontrib>Silva, L. ; Bellon, O.R.P. ; Boyer, K.L.</creatorcontrib><description>We present a new method for precise registration of multiple range images with low overlap based on genetic algorithms (GAs). The proposed method minimizes the alignment error within the common overlap area among a set of views, which is computed by a novel robust evaluation metric, called the surface interpenetration measure. Because they search in a space of transformations, GAs are capable of registering surfaces without need for prealignment, as opposed to methods based on the iterative closest point (ICP) algorithm, the most popular to date. The experimental results confirm that the new method ensures more precise alignments than combined sequential pairwise alignments for multiview registration, providing accurate global alignment among overlapping views.</description><identifier>ISBN: 9780769519913</identifier><identifier>ISBN: 0769519911</identifier><identifier>DOI: 10.1109/IM.2003.1240259</identifier><language>eng</language><publisher>IEEE</publisher><subject>Area measurement ; Buildings ; Genetic algorithms ; Image converters ; Image registration ; Image restoration ; Iterative algorithms ; Iterative closest point algorithm ; Iterative methods ; Robustness</subject><ispartof>Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings, 2003, p.268-275</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1240259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1240259$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Silva, L.</creatorcontrib><creatorcontrib>Bellon, O.R.P.</creatorcontrib><creatorcontrib>Boyer, K.L.</creatorcontrib><title>Enhanced, robust genetic algorithms for multiview range image registration</title><title>Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings</title><addtitle>IM</addtitle><description>We present a new method for precise registration of multiple range images with low overlap based on genetic algorithms (GAs). The proposed method minimizes the alignment error within the common overlap area among a set of views, which is computed by a novel robust evaluation metric, called the surface interpenetration measure. Because they search in a space of transformations, GAs are capable of registering surfaces without need for prealignment, as opposed to methods based on the iterative closest point (ICP) algorithm, the most popular to date. The experimental results confirm that the new method ensures more precise alignments than combined sequential pairwise alignments for multiview registration, providing accurate global alignment among overlapping views.</description><subject>Area measurement</subject><subject>Buildings</subject><subject>Genetic algorithms</subject><subject>Image converters</subject><subject>Image registration</subject><subject>Image restoration</subject><subject>Iterative algorithms</subject><subject>Iterative closest point algorithm</subject><subject>Iterative methods</subject><subject>Robustness</subject><isbn>9780769519913</isbn><isbn>0769519911</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT0tLAzEYDIig1D178JIf4K55bDbJUUrVloqX3kse324j-5AkVfz3BuwcZpjLPBC6p6ShlOin7XvDCOENZS1hQl-hSktFZKcF1ZryG1Sl9EkKuOatVrdot5lPZnbgH3Fc7DllPMAMOThsxmGJIZ-mhPsl4uk85vAd4AdHMw-Aw2QKRxhCytHksMx36Lo3Y4Lqoit0eNkc1m_1_uN1u37e14FKkWuQpZ5Z7wpZ67u-Z8A6QR0xqvfEMSm4VNz71inLlDXOkGKh9UJob_kKPfzHBgA4fsUyJP4eL4f5H6FTTJ4</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Silva, L.</creator><creator>Bellon, O.R.P.</creator><creator>Boyer, K.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Enhanced, robust genetic algorithms for multiview range image registration</title><author>Silva, L. ; Bellon, O.R.P. ; Boyer, K.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e70002bdc02bbbd6ff2e2651c0a8fd0c2753783dd4c8b28baca083de4d559db3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Area measurement</topic><topic>Buildings</topic><topic>Genetic algorithms</topic><topic>Image converters</topic><topic>Image registration</topic><topic>Image restoration</topic><topic>Iterative algorithms</topic><topic>Iterative closest point algorithm</topic><topic>Iterative methods</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Silva, L.</creatorcontrib><creatorcontrib>Bellon, O.R.P.</creatorcontrib><creatorcontrib>Boyer, K.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Silva, L.</au><au>Bellon, O.R.P.</au><au>Boyer, K.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhanced, robust genetic algorithms for multiview range image registration</atitle><btitle>Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings</btitle><stitle>IM</stitle><date>2003</date><risdate>2003</risdate><spage>268</spage><epage>275</epage><pages>268-275</pages><isbn>9780769519913</isbn><isbn>0769519911</isbn><abstract>We present a new method for precise registration of multiple range images with low overlap based on genetic algorithms (GAs). The proposed method minimizes the alignment error within the common overlap area among a set of views, which is computed by a novel robust evaluation metric, called the surface interpenetration measure. Because they search in a space of transformations, GAs are capable of registering surfaces without need for prealignment, as opposed to methods based on the iterative closest point (ICP) algorithm, the most popular to date. The experimental results confirm that the new method ensures more precise alignments than combined sequential pairwise alignments for multiview registration, providing accurate global alignment among overlapping views.</abstract><pub>IEEE</pub><doi>10.1109/IM.2003.1240259</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769519913
ispartof Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings, 2003, p.268-275
issn
language eng
recordid cdi_ieee_primary_1240259
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Area measurement
Buildings
Genetic algorithms
Image converters
Image registration
Image restoration
Iterative algorithms
Iterative closest point algorithm
Iterative methods
Robustness
title Enhanced, robust genetic algorithms for multiview range image registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhanced,%20robust%20genetic%20algorithms%20for%20multiview%20range%20image%20registration&rft.btitle=Fourth%20International%20Conference%20on%203-D%20Digital%20Imaging%20and%20Modeling,%202003.%203DIM%202003.%20Proceedings&rft.au=Silva,%20L.&rft.date=2003&rft.spage=268&rft.epage=275&rft.pages=268-275&rft.isbn=9780769519913&rft.isbn_list=0769519911&rft_id=info:doi/10.1109/IM.2003.1240259&rft_dat=%3Cieee_6IE%3E1240259%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1240259&rfr_iscdi=true