Enhanced, robust genetic algorithms for multiview range image registration
We present a new method for precise registration of multiple range images with low overlap based on genetic algorithms (GAs). The proposed method minimizes the alignment error within the common overlap area among a set of views, which is computed by a novel robust evaluation metric, called the surfa...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | |
container_start_page | 268 |
container_title | |
container_volume | |
creator | Silva, L. Bellon, O.R.P. Boyer, K.L. |
description | We present a new method for precise registration of multiple range images with low overlap based on genetic algorithms (GAs). The proposed method minimizes the alignment error within the common overlap area among a set of views, which is computed by a novel robust evaluation metric, called the surface interpenetration measure. Because they search in a space of transformations, GAs are capable of registering surfaces without need for prealignment, as opposed to methods based on the iterative closest point (ICP) algorithm, the most popular to date. The experimental results confirm that the new method ensures more precise alignments than combined sequential pairwise alignments for multiview registration, providing accurate global alignment among overlapping views. |
doi_str_mv | 10.1109/IM.2003.1240259 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1240259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1240259</ieee_id><sourcerecordid>1240259</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e70002bdc02bbbd6ff2e2651c0a8fd0c2753783dd4c8b28baca083de4d559db3</originalsourceid><addsrcrecordid>eNotT0tLAzEYDIig1D178JIf4K55bDbJUUrVloqX3kse324j-5AkVfz3BuwcZpjLPBC6p6ShlOin7XvDCOENZS1hQl-hSktFZKcF1ZryG1Sl9EkKuOatVrdot5lPZnbgH3Fc7DllPMAMOThsxmGJIZ-mhPsl4uk85vAd4AdHMw-Aw2QKRxhCytHksMx36Lo3Y4Lqoit0eNkc1m_1_uN1u37e14FKkWuQpZ5Z7wpZ67u-Z8A6QR0xqvfEMSm4VNz71inLlDXOkGKh9UJob_kKPfzHBgA4fsUyJP4eL4f5H6FTTJ4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Enhanced, robust genetic algorithms for multiview range image registration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Silva, L. ; Bellon, O.R.P. ; Boyer, K.L.</creator><creatorcontrib>Silva, L. ; Bellon, O.R.P. ; Boyer, K.L.</creatorcontrib><description>We present a new method for precise registration of multiple range images with low overlap based on genetic algorithms (GAs). The proposed method minimizes the alignment error within the common overlap area among a set of views, which is computed by a novel robust evaluation metric, called the surface interpenetration measure. Because they search in a space of transformations, GAs are capable of registering surfaces without need for prealignment, as opposed to methods based on the iterative closest point (ICP) algorithm, the most popular to date. The experimental results confirm that the new method ensures more precise alignments than combined sequential pairwise alignments for multiview registration, providing accurate global alignment among overlapping views.</description><identifier>ISBN: 9780769519913</identifier><identifier>ISBN: 0769519911</identifier><identifier>DOI: 10.1109/IM.2003.1240259</identifier><language>eng</language><publisher>IEEE</publisher><subject>Area measurement ; Buildings ; Genetic algorithms ; Image converters ; Image registration ; Image restoration ; Iterative algorithms ; Iterative closest point algorithm ; Iterative methods ; Robustness</subject><ispartof>Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings, 2003, p.268-275</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1240259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1240259$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Silva, L.</creatorcontrib><creatorcontrib>Bellon, O.R.P.</creatorcontrib><creatorcontrib>Boyer, K.L.</creatorcontrib><title>Enhanced, robust genetic algorithms for multiview range image registration</title><title>Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings</title><addtitle>IM</addtitle><description>We present a new method for precise registration of multiple range images with low overlap based on genetic algorithms (GAs). The proposed method minimizes the alignment error within the common overlap area among a set of views, which is computed by a novel robust evaluation metric, called the surface interpenetration measure. Because they search in a space of transformations, GAs are capable of registering surfaces without need for prealignment, as opposed to methods based on the iterative closest point (ICP) algorithm, the most popular to date. The experimental results confirm that the new method ensures more precise alignments than combined sequential pairwise alignments for multiview registration, providing accurate global alignment among overlapping views.</description><subject>Area measurement</subject><subject>Buildings</subject><subject>Genetic algorithms</subject><subject>Image converters</subject><subject>Image registration</subject><subject>Image restoration</subject><subject>Iterative algorithms</subject><subject>Iterative closest point algorithm</subject><subject>Iterative methods</subject><subject>Robustness</subject><isbn>9780769519913</isbn><isbn>0769519911</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT0tLAzEYDIig1D178JIf4K55bDbJUUrVloqX3kse324j-5AkVfz3BuwcZpjLPBC6p6ShlOin7XvDCOENZS1hQl-hSktFZKcF1ZryG1Sl9EkKuOatVrdot5lPZnbgH3Fc7DllPMAMOThsxmGJIZ-mhPsl4uk85vAd4AdHMw-Aw2QKRxhCytHksMx36Lo3Y4Lqoit0eNkc1m_1_uN1u37e14FKkWuQpZ5Z7wpZ67u-Z8A6QR0xqvfEMSm4VNz71inLlDXOkGKh9UJob_kKPfzHBgA4fsUyJP4eL4f5H6FTTJ4</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Silva, L.</creator><creator>Bellon, O.R.P.</creator><creator>Boyer, K.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Enhanced, robust genetic algorithms for multiview range image registration</title><author>Silva, L. ; Bellon, O.R.P. ; Boyer, K.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e70002bdc02bbbd6ff2e2651c0a8fd0c2753783dd4c8b28baca083de4d559db3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Area measurement</topic><topic>Buildings</topic><topic>Genetic algorithms</topic><topic>Image converters</topic><topic>Image registration</topic><topic>Image restoration</topic><topic>Iterative algorithms</topic><topic>Iterative closest point algorithm</topic><topic>Iterative methods</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Silva, L.</creatorcontrib><creatorcontrib>Bellon, O.R.P.</creatorcontrib><creatorcontrib>Boyer, K.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Silva, L.</au><au>Bellon, O.R.P.</au><au>Boyer, K.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhanced, robust genetic algorithms for multiview range image registration</atitle><btitle>Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings</btitle><stitle>IM</stitle><date>2003</date><risdate>2003</risdate><spage>268</spage><epage>275</epage><pages>268-275</pages><isbn>9780769519913</isbn><isbn>0769519911</isbn><abstract>We present a new method for precise registration of multiple range images with low overlap based on genetic algorithms (GAs). The proposed method minimizes the alignment error within the common overlap area among a set of views, which is computed by a novel robust evaluation metric, called the surface interpenetration measure. Because they search in a space of transformations, GAs are capable of registering surfaces without need for prealignment, as opposed to methods based on the iterative closest point (ICP) algorithm, the most popular to date. The experimental results confirm that the new method ensures more precise alignments than combined sequential pairwise alignments for multiview registration, providing accurate global alignment among overlapping views.</abstract><pub>IEEE</pub><doi>10.1109/IM.2003.1240259</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769519913 |
ispartof | Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings, 2003, p.268-275 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1240259 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Area measurement Buildings Genetic algorithms Image converters Image registration Image restoration Iterative algorithms Iterative closest point algorithm Iterative methods Robustness |
title | Enhanced, robust genetic algorithms for multiview range image registration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhanced,%20robust%20genetic%20algorithms%20for%20multiview%20range%20image%20registration&rft.btitle=Fourth%20International%20Conference%20on%203-D%20Digital%20Imaging%20and%20Modeling,%202003.%203DIM%202003.%20Proceedings&rft.au=Silva,%20L.&rft.date=2003&rft.spage=268&rft.epage=275&rft.pages=268-275&rft.isbn=9780769519913&rft.isbn_list=0769519911&rft_id=info:doi/10.1109/IM.2003.1240259&rft_dat=%3Cieee_6IE%3E1240259%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1240259&rfr_iscdi=true |