Global numerical optimization using multi-agent genetic algorithm

A new algorithm, Multi-Agent Genetic Algorithm (MAGA), is proposed. It realizes the complex global numerical optimization via agent-agent interactions. All agents are fixed on a lattice, and they will compete or cooperate with their neighbors to increase their own energy. On the other hand, agents c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhong Weicai, Liu Jing, Xue Mingzhi, Jiao Licheng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue
container_start_page 165
container_title
container_volume
creator Zhong Weicai
Liu Jing
Xue Mingzhi
Jiao Licheng
description A new algorithm, Multi-Agent Genetic Algorithm (MAGA), is proposed. It realizes the complex global numerical optimization via agent-agent interactions. All agents are fixed on a lattice, and they will compete or cooperate with their neighbors to increase their own energy. On the other hand, agents can also increase their energy with knowledge. In experiments, 4 multimodal benchmark functions are used to explore the effect of problem of problem dimension on the performance of MAGA. The results on functions with 20/spl sim/10,000 dimensions show that MAGA obtains good performance in solving high dimensional functions. Even when dimension is as high as 10,000, MAGA can still find high quality solutions with very low computational cost.
doi_str_mv 10.1109/ICCIMA.2003.1238119
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1238119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1238119</ieee_id><sourcerecordid>1238119</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2beb6764f2203477d120cdef22c1b2f6f7eeb9c2de0dd4d0e2aa7ac7828ae5653</originalsourceid><addsrcrecordid>eNotj0FPhDAUhJsYE3XdX7AX_gD42gKlR0J0JVnjZe-b0j7wmRY2UA766yVx5zDzzWWSYezAIeMc9EvbNO1HnQkAmXEhK871HXsCVeqC60LxB7Zflm_YJLXUAI-sPvqpMz4Z14Az2Y2ma6RAvybSNCbrQuOQhNVHSs2AY0w2w0g2MX6YZopf4Znd98YvuL_ljp3fXs_Ne3r6PLZNfUpJQ0xFh12pyrwXAmSulOMCrMOtWt6JvuwVYqetcAjO5Q5QGKOMVZWoDBZlIXfs8D9LiHi5zhTM_HO5nZR_GltJ2w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Global numerical optimization using multi-agent genetic algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhong Weicai ; Liu Jing ; Xue Mingzhi ; Jiao Licheng</creator><creatorcontrib>Zhong Weicai ; Liu Jing ; Xue Mingzhi ; Jiao Licheng</creatorcontrib><description>A new algorithm, Multi-Agent Genetic Algorithm (MAGA), is proposed. It realizes the complex global numerical optimization via agent-agent interactions. All agents are fixed on a lattice, and they will compete or cooperate with their neighbors to increase their own energy. On the other hand, agents can also increase their energy with knowledge. In experiments, 4 multimodal benchmark functions are used to explore the effect of problem of problem dimension on the performance of MAGA. The results on functions with 20/spl sim/10,000 dimensions show that MAGA obtains good performance in solving high dimensional functions. Even when dimension is as high as 10,000, MAGA can still find high quality solutions with very low computational cost.</description><identifier>ISBN: 0769519571</identifier><identifier>ISBN: 9780769519579</identifier><identifier>DOI: 10.1109/ICCIMA.2003.1238119</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational intelligence ; Genetics ; Lattices</subject><ispartof>Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003, 2003, p.165-170</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1238119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1238119$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhong Weicai</creatorcontrib><creatorcontrib>Liu Jing</creatorcontrib><creatorcontrib>Xue Mingzhi</creatorcontrib><creatorcontrib>Jiao Licheng</creatorcontrib><title>Global numerical optimization using multi-agent genetic algorithm</title><title>Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003</title><addtitle>ICCIMA</addtitle><description>A new algorithm, Multi-Agent Genetic Algorithm (MAGA), is proposed. It realizes the complex global numerical optimization via agent-agent interactions. All agents are fixed on a lattice, and they will compete or cooperate with their neighbors to increase their own energy. On the other hand, agents can also increase their energy with knowledge. In experiments, 4 multimodal benchmark functions are used to explore the effect of problem of problem dimension on the performance of MAGA. The results on functions with 20/spl sim/10,000 dimensions show that MAGA obtains good performance in solving high dimensional functions. Even when dimension is as high as 10,000, MAGA can still find high quality solutions with very low computational cost.</description><subject>Computational intelligence</subject><subject>Genetics</subject><subject>Lattices</subject><isbn>0769519571</isbn><isbn>9780769519579</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FPhDAUhJsYE3XdX7AX_gD42gKlR0J0JVnjZe-b0j7wmRY2UA766yVx5zDzzWWSYezAIeMc9EvbNO1HnQkAmXEhK871HXsCVeqC60LxB7Zflm_YJLXUAI-sPvqpMz4Z14Az2Y2ma6RAvybSNCbrQuOQhNVHSs2AY0w2w0g2MX6YZopf4Znd98YvuL_ljp3fXs_Ne3r6PLZNfUpJQ0xFh12pyrwXAmSulOMCrMOtWt6JvuwVYqetcAjO5Q5QGKOMVZWoDBZlIXfs8D9LiHi5zhTM_HO5nZR_GltJ2w</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Zhong Weicai</creator><creator>Liu Jing</creator><creator>Xue Mingzhi</creator><creator>Jiao Licheng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Global numerical optimization using multi-agent genetic algorithm</title><author>Zhong Weicai ; Liu Jing ; Xue Mingzhi ; Jiao Licheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2beb6764f2203477d120cdef22c1b2f6f7eeb9c2de0dd4d0e2aa7ac7828ae5653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computational intelligence</topic><topic>Genetics</topic><topic>Lattices</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhong Weicai</creatorcontrib><creatorcontrib>Liu Jing</creatorcontrib><creatorcontrib>Xue Mingzhi</creatorcontrib><creatorcontrib>Jiao Licheng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhong Weicai</au><au>Liu Jing</au><au>Xue Mingzhi</au><au>Jiao Licheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Global numerical optimization using multi-agent genetic algorithm</atitle><btitle>Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003</btitle><stitle>ICCIMA</stitle><date>2003</date><risdate>2003</risdate><spage>165</spage><epage>170</epage><pages>165-170</pages><isbn>0769519571</isbn><isbn>9780769519579</isbn><abstract>A new algorithm, Multi-Agent Genetic Algorithm (MAGA), is proposed. It realizes the complex global numerical optimization via agent-agent interactions. All agents are fixed on a lattice, and they will compete or cooperate with their neighbors to increase their own energy. On the other hand, agents can also increase their energy with knowledge. In experiments, 4 multimodal benchmark functions are used to explore the effect of problem of problem dimension on the performance of MAGA. The results on functions with 20/spl sim/10,000 dimensions show that MAGA obtains good performance in solving high dimensional functions. Even when dimension is as high as 10,000, MAGA can still find high quality solutions with very low computational cost.</abstract><pub>IEEE</pub><doi>10.1109/ICCIMA.2003.1238119</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769519571
ispartof Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003, 2003, p.165-170
issn
language eng
recordid cdi_ieee_primary_1238119
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational intelligence
Genetics
Lattices
title Global numerical optimization using multi-agent genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Global%20numerical%20optimization%20using%20multi-agent%20genetic%20algorithm&rft.btitle=Proceedings%20Fifth%20International%20Conference%20on%20Computational%20Intelligence%20and%20Multimedia%20Applications.%20ICCIMA%202003&rft.au=Zhong%20Weicai&rft.date=2003&rft.spage=165&rft.epage=170&rft.pages=165-170&rft.isbn=0769519571&rft.isbn_list=9780769519579&rft_id=info:doi/10.1109/ICCIMA.2003.1238119&rft_dat=%3Cieee_6IE%3E1238119%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1238119&rfr_iscdi=true