Feedback control for a heat equation under a white-noise excitation
An optimal feedback control problem for a heat conduction equation under white-noise random excitation is considered. The problem is to minimize expected response for integral value of squared difference among current and preassigned temperature during a given time instant T. The control forces are...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1356 vol.4 |
---|---|
container_issue | |
container_start_page | 1352 |
container_title | |
container_volume | 4 |
creator | Bratus, A. Ivanova, A.P. |
description | An optimal feedback control problem for a heat conduction equation under white-noise random excitation is considered. The problem is to minimize expected response for integral value of squared difference among current and preassigned temperature during a given time instant T. The control forces are concentrated in the fixed points (heat actuators). The magnitude of control forces are restricted by positive values. Using dynamic programming method this problem can be reduced to the Couchy problem for Hamilton-Jacobi-Bellman (HJB) partial nonlinear differential equation for a Bellman function H in unbounded domain. Specifically, an exact analytical solution has been obtained within a certain unbounded outer domain on the phase plane, which provides necessary boundary conditions for numerical solution within a bounded (finite) inner domain, thereby alleviating problem of numerical analysis for an unbounded domain. The size of outer domain can be chosen such way that the values of Bellman function H and its corresponding derivatives will coincide in the boundary of outer and inner domains. As an example the case of control problem for one heat actuator in the rod is considered. |
doi_str_mv | 10.1109/PHYCON.2003.1237104 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1237104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1237104</ieee_id><sourcerecordid>1237104</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d97948147d56d4b03f3a529894101b9b7a27330f248a15bf573e0956073465e53</originalsourceid><addsrcrecordid>eNotj81KAzEUhQMiVGufoJu8wIw3uclkspTBWqFYF13YVUkmNzRaZ3QmRX17_3o2B74DHxzG5gJKIcBePy63zfqhlABYColGgDpjl2BqQGPRPk3YbByf4SdKKy2rC9YsiIJ37Qtv-y4P_YHHfuCO78llTu9Hl1Pf8WMX6Jd-7FOmouvTSJw-25T_5it2Ht1hpNmpp2yzuN00y2K1vrtvblZFspCLYI1VtVAm6CooDxjRaWlrqwQIb71x0iBClKp2QvuoDRJYXYFBVWnSOGXzf20iot3bkF7d8LU73cRv1CZHbQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feedback control for a heat equation under a white-noise excitation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bratus, A. ; Ivanova, A.P.</creator><creatorcontrib>Bratus, A. ; Ivanova, A.P.</creatorcontrib><description>An optimal feedback control problem for a heat conduction equation under white-noise random excitation is considered. The problem is to minimize expected response for integral value of squared difference among current and preassigned temperature during a given time instant T. The control forces are concentrated in the fixed points (heat actuators). The magnitude of control forces are restricted by positive values. Using dynamic programming method this problem can be reduced to the Couchy problem for Hamilton-Jacobi-Bellman (HJB) partial nonlinear differential equation for a Bellman function H in unbounded domain. Specifically, an exact analytical solution has been obtained within a certain unbounded outer domain on the phase plane, which provides necessary boundary conditions for numerical solution within a bounded (finite) inner domain, thereby alleviating problem of numerical analysis for an unbounded domain. The size of outer domain can be chosen such way that the values of Bellman function H and its corresponding derivatives will coincide in the boundary of outer and inner domains. As an example the case of control problem for one heat actuator in the rod is considered.</description><identifier>ISBN: 078037939X</identifier><identifier>ISBN: 9780780379398</identifier><identifier>DOI: 10.1109/PHYCON.2003.1237104</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Control systems ; Cost function ; Feedback control ; Force control ; Functional programming ; Integral equations ; Nonlinear equations ; Space heating ; Temperature control</subject><ispartof>2003 International Conference Physics and Control. Proceedings, 2003, Vol.4, p.1352-1356 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1237104$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1237104$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bratus, A.</creatorcontrib><creatorcontrib>Ivanova, A.P.</creatorcontrib><title>Feedback control for a heat equation under a white-noise excitation</title><title>2003 International Conference Physics and Control. Proceedings</title><addtitle>PHYCON</addtitle><description>An optimal feedback control problem for a heat conduction equation under white-noise random excitation is considered. The problem is to minimize expected response for integral value of squared difference among current and preassigned temperature during a given time instant T. The control forces are concentrated in the fixed points (heat actuators). The magnitude of control forces are restricted by positive values. Using dynamic programming method this problem can be reduced to the Couchy problem for Hamilton-Jacobi-Bellman (HJB) partial nonlinear differential equation for a Bellman function H in unbounded domain. Specifically, an exact analytical solution has been obtained within a certain unbounded outer domain on the phase plane, which provides necessary boundary conditions for numerical solution within a bounded (finite) inner domain, thereby alleviating problem of numerical analysis for an unbounded domain. The size of outer domain can be chosen such way that the values of Bellman function H and its corresponding derivatives will coincide in the boundary of outer and inner domains. As an example the case of control problem for one heat actuator in the rod is considered.</description><subject>Actuators</subject><subject>Control systems</subject><subject>Cost function</subject><subject>Feedback control</subject><subject>Force control</subject><subject>Functional programming</subject><subject>Integral equations</subject><subject>Nonlinear equations</subject><subject>Space heating</subject><subject>Temperature control</subject><isbn>078037939X</isbn><isbn>9780780379398</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KAzEUhQMiVGufoJu8wIw3uclkspTBWqFYF13YVUkmNzRaZ3QmRX17_3o2B74DHxzG5gJKIcBePy63zfqhlABYColGgDpjl2BqQGPRPk3YbByf4SdKKy2rC9YsiIJ37Qtv-y4P_YHHfuCO78llTu9Hl1Pf8WMX6Jd-7FOmouvTSJw-25T_5it2Ht1hpNmpp2yzuN00y2K1vrtvblZFspCLYI1VtVAm6CooDxjRaWlrqwQIb71x0iBClKp2QvuoDRJYXYFBVWnSOGXzf20iot3bkF7d8LU73cRv1CZHbQ</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Bratus, A.</creator><creator>Ivanova, A.P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Feedback control for a heat equation under a white-noise excitation</title><author>Bratus, A. ; Ivanova, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d97948147d56d4b03f3a529894101b9b7a27330f248a15bf573e0956073465e53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Actuators</topic><topic>Control systems</topic><topic>Cost function</topic><topic>Feedback control</topic><topic>Force control</topic><topic>Functional programming</topic><topic>Integral equations</topic><topic>Nonlinear equations</topic><topic>Space heating</topic><topic>Temperature control</topic><toplevel>online_resources</toplevel><creatorcontrib>Bratus, A.</creatorcontrib><creatorcontrib>Ivanova, A.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bratus, A.</au><au>Ivanova, A.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feedback control for a heat equation under a white-noise excitation</atitle><btitle>2003 International Conference Physics and Control. Proceedings</btitle><stitle>PHYCON</stitle><date>2003</date><risdate>2003</risdate><volume>4</volume><spage>1352</spage><epage>1356 vol.4</epage><pages>1352-1356 vol.4</pages><isbn>078037939X</isbn><isbn>9780780379398</isbn><abstract>An optimal feedback control problem for a heat conduction equation under white-noise random excitation is considered. The problem is to minimize expected response for integral value of squared difference among current and preassigned temperature during a given time instant T. The control forces are concentrated in the fixed points (heat actuators). The magnitude of control forces are restricted by positive values. Using dynamic programming method this problem can be reduced to the Couchy problem for Hamilton-Jacobi-Bellman (HJB) partial nonlinear differential equation for a Bellman function H in unbounded domain. Specifically, an exact analytical solution has been obtained within a certain unbounded outer domain on the phase plane, which provides necessary boundary conditions for numerical solution within a bounded (finite) inner domain, thereby alleviating problem of numerical analysis for an unbounded domain. The size of outer domain can be chosen such way that the values of Bellman function H and its corresponding derivatives will coincide in the boundary of outer and inner domains. As an example the case of control problem for one heat actuator in the rod is considered.</abstract><pub>IEEE</pub><doi>10.1109/PHYCON.2003.1237104</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 078037939X |
ispartof | 2003 International Conference Physics and Control. Proceedings, 2003, Vol.4, p.1352-1356 vol.4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1237104 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Actuators Control systems Cost function Feedback control Force control Functional programming Integral equations Nonlinear equations Space heating Temperature control |
title | Feedback control for a heat equation under a white-noise excitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feedback%20control%20for%20a%20heat%20equation%20under%20a%20white-noise%20excitation&rft.btitle=2003%20International%20Conference%20Physics%20and%20Control.%20Proceedings&rft.au=Bratus,%20A.&rft.date=2003&rft.volume=4&rft.spage=1352&rft.epage=1356%20vol.4&rft.pages=1352-1356%20vol.4&rft.isbn=078037939X&rft.isbn_list=9780780379398&rft_id=info:doi/10.1109/PHYCON.2003.1237104&rft_dat=%3Cieee_6IE%3E1237104%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1237104&rfr_iscdi=true |