Magnet arrays for use in a 3-D MEMS mirror array for optical switching
Magnet arrays for creating regions of high magnetic flux gradient are presented. These high-flux gradient regions are useful for actuation of two-axis micromirrors with quadrupole coils, which are an essential component of some optical switches. Three magnet arrays are presented: a checkerboard arra...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2003-09, Vol.39 (5), p.3286-3288 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3288 |
---|---|
container_issue | 5 |
container_start_page | 3286 |
container_title | IEEE transactions on magnetics |
container_volume | 39 |
creator | Taylor, W.P. Bernstein, J.J. Brazzle, J.D. Corcoran, C.J. |
description | Magnet arrays for creating regions of high magnetic flux gradient are presented. These high-flux gradient regions are useful for actuation of two-axis micromirrors with quadrupole coils, which are an essential component of some optical switches. Three magnet arrays are presented: a checkerboard array made of individual magnets and two monolithic magnet arrays, an array with filled holes, and an array with raised nubs. Monolithic magnet arrays reduce costs and eliminate the runout introduced from fabrication tolerances of the checkerboard array. Elimination of runout allows the mirrors to be precisely centered over the high-gradient regions. Quadrupole mirror arrays were fabricated and showed performance of 7/spl deg//mA for a monolithic magnet with an array of steel-filled holes. |
doi_str_mv | 10.1109/TMAG.2003.816747 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1233373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1233373</ieee_id><sourcerecordid>28369027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-92764dcd9056736dd58d5b0a1b1d512687fed8ac6ecc6bc7d6f9b6243851d3053</originalsourceid><addsrcrecordid>eNpdkEtLAzEURoMoWKt7wU0QdDc1r8ljWWpbhRYX1nXIJJma0s7UZIr03zvtFAquLpd7vo_LAeAeowHGSL0s5sPpgCBEBxJzwcQF6GHFcIYQV5eghxCWmWKcXYOblFbtynKMemAyN8vKN9DEaPYJlnWEu-RhqKCBNHuF8_H8E25CjO3hyByRetsEa9Yw_YbGfodqeQuuSrNO_u40--BrMl6M3rLZx_R9NJxlljLVZIoIzpx1CuVcUO5cLl1eIIML7HJMuBSld9JY7q3lhRWOl6rghFGZY0dRTvvguevdxvpn51OjNyFZv16byte7pImkXCEiWvDxH7iqd7Fqf9NSMsokEaSFUAfZWKcUfam3MWxM3GuM9MGqPljVB6u6s9pGnk69JrUGymgqG9I5l2NOCGUt99BxwXt_PhNKqaD0Dx2-fbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884348272</pqid></control><display><type>article</type><title>Magnet arrays for use in a 3-D MEMS mirror array for optical switching</title><source>IEEE Electronic Library (IEL)</source><creator>Taylor, W.P. ; Bernstein, J.J. ; Brazzle, J.D. ; Corcoran, C.J.</creator><creatorcontrib>Taylor, W.P. ; Bernstein, J.J. ; Brazzle, J.D. ; Corcoran, C.J.</creatorcontrib><description>Magnet arrays for creating regions of high magnetic flux gradient are presented. These high-flux gradient regions are useful for actuation of two-axis micromirrors with quadrupole coils, which are an essential component of some optical switches. Three magnet arrays are presented: a checkerboard array made of individual magnets and two monolithic magnet arrays, an array with filled holes, and an array with raised nubs. Monolithic magnet arrays reduce costs and eliminate the runout introduced from fabrication tolerances of the checkerboard array. Elimination of runout allows the mirrors to be precisely centered over the high-gradient regions. Quadrupole mirror arrays were fabricated and showed performance of 7/spl deg//mA for a monolithic magnet with an array of steel-filled holes.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2003.816747</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coils ; Costs ; Electronics ; Exact sciences and technology ; Magnetic device characterization, design, and modeling ; Magnetic devices ; Magnetic flux ; Magnetic switching ; Magnetism ; Micro- and nanoelectromechanical devices (mems/nems) ; Micromechanical devices ; Micromirrors ; Mirrors ; Optical arrays ; Optical device fabrication ; Optical switches ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>IEEE transactions on magnetics, 2003-09, Vol.39 (5), p.3286-3288</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-92764dcd9056736dd58d5b0a1b1d512687fed8ac6ecc6bc7d6f9b6243851d3053</citedby><cites>FETCH-LOGICAL-c349t-92764dcd9056736dd58d5b0a1b1d512687fed8ac6ecc6bc7d6f9b6243851d3053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1233373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1233373$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15162234$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, W.P.</creatorcontrib><creatorcontrib>Bernstein, J.J.</creatorcontrib><creatorcontrib>Brazzle, J.D.</creatorcontrib><creatorcontrib>Corcoran, C.J.</creatorcontrib><title>Magnet arrays for use in a 3-D MEMS mirror array for optical switching</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Magnet arrays for creating regions of high magnetic flux gradient are presented. These high-flux gradient regions are useful for actuation of two-axis micromirrors with quadrupole coils, which are an essential component of some optical switches. Three magnet arrays are presented: a checkerboard array made of individual magnets and two monolithic magnet arrays, an array with filled holes, and an array with raised nubs. Monolithic magnet arrays reduce costs and eliminate the runout introduced from fabrication tolerances of the checkerboard array. Elimination of runout allows the mirrors to be precisely centered over the high-gradient regions. Quadrupole mirror arrays were fabricated and showed performance of 7/spl deg//mA for a monolithic magnet with an array of steel-filled holes.</description><subject>Applied sciences</subject><subject>Coils</subject><subject>Costs</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Magnetic device characterization, design, and modeling</subject><subject>Magnetic devices</subject><subject>Magnetic flux</subject><subject>Magnetic switching</subject><subject>Magnetism</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Micromechanical devices</subject><subject>Micromirrors</subject><subject>Mirrors</subject><subject>Optical arrays</subject><subject>Optical device fabrication</subject><subject>Optical switches</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEURoMoWKt7wU0QdDc1r8ljWWpbhRYX1nXIJJma0s7UZIr03zvtFAquLpd7vo_LAeAeowHGSL0s5sPpgCBEBxJzwcQF6GHFcIYQV5eghxCWmWKcXYOblFbtynKMemAyN8vKN9DEaPYJlnWEu-RhqKCBNHuF8_H8E25CjO3hyByRetsEa9Yw_YbGfodqeQuuSrNO_u40--BrMl6M3rLZx_R9NJxlljLVZIoIzpx1CuVcUO5cLl1eIIML7HJMuBSld9JY7q3lhRWOl6rghFGZY0dRTvvguevdxvpn51OjNyFZv16byte7pImkXCEiWvDxH7iqd7Fqf9NSMsokEaSFUAfZWKcUfam3MWxM3GuM9MGqPljVB6u6s9pGnk69JrUGymgqG9I5l2NOCGUt99BxwXt_PhNKqaD0Dx2-fbQ</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Taylor, W.P.</creator><creator>Bernstein, J.J.</creator><creator>Brazzle, J.D.</creator><creator>Corcoran, C.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20030901</creationdate><title>Magnet arrays for use in a 3-D MEMS mirror array for optical switching</title><author>Taylor, W.P. ; Bernstein, J.J. ; Brazzle, J.D. ; Corcoran, C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-92764dcd9056736dd58d5b0a1b1d512687fed8ac6ecc6bc7d6f9b6243851d3053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Coils</topic><topic>Costs</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Magnetic device characterization, design, and modeling</topic><topic>Magnetic devices</topic><topic>Magnetic flux</topic><topic>Magnetic switching</topic><topic>Magnetism</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Micromechanical devices</topic><topic>Micromirrors</topic><topic>Mirrors</topic><topic>Optical arrays</topic><topic>Optical device fabrication</topic><topic>Optical switches</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>online_resources</toplevel><creatorcontrib>Taylor, W.P.</creatorcontrib><creatorcontrib>Bernstein, J.J.</creatorcontrib><creatorcontrib>Brazzle, J.D.</creatorcontrib><creatorcontrib>Corcoran, C.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taylor, W.P.</au><au>Bernstein, J.J.</au><au>Brazzle, J.D.</au><au>Corcoran, C.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnet arrays for use in a 3-D MEMS mirror array for optical switching</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2003-09-01</date><risdate>2003</risdate><volume>39</volume><issue>5</issue><spage>3286</spage><epage>3288</epage><pages>3286-3288</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Magnet arrays for creating regions of high magnetic flux gradient are presented. These high-flux gradient regions are useful for actuation of two-axis micromirrors with quadrupole coils, which are an essential component of some optical switches. Three magnet arrays are presented: a checkerboard array made of individual magnets and two monolithic magnet arrays, an array with filled holes, and an array with raised nubs. Monolithic magnet arrays reduce costs and eliminate the runout introduced from fabrication tolerances of the checkerboard array. Elimination of runout allows the mirrors to be precisely centered over the high-gradient regions. Quadrupole mirror arrays were fabricated and showed performance of 7/spl deg//mA for a monolithic magnet with an array of steel-filled holes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2003.816747</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2003-09, Vol.39 (5), p.3286-3288 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_1233373 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Coils Costs Electronics Exact sciences and technology Magnetic device characterization, design, and modeling Magnetic devices Magnetic flux Magnetic switching Magnetism Micro- and nanoelectromechanical devices (mems/nems) Micromechanical devices Micromirrors Mirrors Optical arrays Optical device fabrication Optical switches Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
title | Magnet arrays for use in a 3-D MEMS mirror array for optical switching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnet%20arrays%20for%20use%20in%20a%203-D%20MEMS%20mirror%20array%20for%20optical%20switching&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Taylor,%20W.P.&rft.date=2003-09-01&rft.volume=39&rft.issue=5&rft.spage=3286&rft.epage=3288&rft.pages=3286-3288&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2003.816747&rft_dat=%3Cproquest_RIE%3E28369027%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884348272&rft_id=info:pmid/&rft_ieee_id=1233373&rfr_iscdi=true |