A data mining algorithm for generalized Web prefetching
Predictive Web prefetching refers to the mechanism of deducing the forthcoming page accesses of a client based on its past accesses. In this paper, we present a new context for the interpretation of Web prefetching algorithms as Markov predictors. We identify the factors that affect the performance...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2003-09, Vol.15 (5), p.1155-1169 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1169 |
---|---|
container_issue | 5 |
container_start_page | 1155 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 15 |
creator | Nanopoulos, A. Katsaros, D. Manolopoulos, Y. |
description | Predictive Web prefetching refers to the mechanism of deducing the forthcoming page accesses of a client based on its past accesses. In this paper, we present a new context for the interpretation of Web prefetching algorithms as Markov predictors. We identify the factors that affect the performance of Web prefetching algorithms. We propose a new algorithm called WM,,, which is based on data mining and is proven to be a generalization of existing ones. It was designed to address their specific limitations and its characteristics include all the above factors. It compares favorably with previously proposed algorithms. Further, the algorithm efficiently addresses the increased number of candidates. We present a detailed performance evaluation of WM, with synthetic and real data. The experimental results show that WM/sub o/ can provide significant improvements over previously proposed Web prefetching algorithms. |
doi_str_mv | 10.1109/TKDE.2003.1232270 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1232270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1232270</ieee_id><sourcerecordid>2591241071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-f3c8ae6e7df084df40fb09720908ed173b3d25803aa3beccbd40f74c7c506aee3</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgUQp_ADEEjHAlHL-SGyPFZQPUYmliNFynEubKk2KnQ7w63FpJSQGWGxL95wt30vIOYURpaBvZs93kxED4CPKOGMSDsiAZplKGdX0MJ5B0FRwIY_JSQhLAFBS0QGR46S0vU1WdVu388Q2887X_WKVVJ1P5tiit039iWXyhkWy9lhh7xZRnpKjyjYBz_b7kLzeT2a3j-n05eHpdjxNHVeiTyvulMUcZVmBEmUloCpASwYaFJZU8oKXLFPAreUFOleUUUjhpMsgt4h8SK539659977B0JtVHRw2jW2x2wSjgUoKTPMor_6UTDPI4_I_VCxnSskIL3_BZbfxbfyu0YwJBvz7WbpDznchxAGZta9X1n8YCmYbjdlGY7bRmH00sedi11Mj4o_fV78AMsGIjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922420393</pqid></control><display><type>article</type><title>A data mining algorithm for generalized Web prefetching</title><source>IEEE Electronic Library (IEL)</source><creator>Nanopoulos, A. ; Katsaros, D. ; Manolopoulos, Y.</creator><creatorcontrib>Nanopoulos, A. ; Katsaros, D. ; Manolopoulos, Y.</creatorcontrib><description>Predictive Web prefetching refers to the mechanism of deducing the forthcoming page accesses of a client based on its past accesses. In this paper, we present a new context for the interpretation of Web prefetching algorithms as Markov predictors. We identify the factors that affect the performance of Web prefetching algorithms. We propose a new algorithm called WM,,, which is based on data mining and is proven to be a generalization of existing ones. It was designed to address their specific limitations and its characteristics include all the above factors. It compares favorably with previously proposed algorithms. Further, the algorithm efficiently addresses the increased number of candidates. We present a detailed performance evaluation of WM, with synthetic and real data. The experimental results show that WM/sub o/ can provide significant improvements over previously proposed Web prefetching algorithms.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2003.1232270</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bandwidth ; Communication system traffic control ; Computer Society ; Costs ; Data mining ; Internet ; Markov processes ; Network servers ; Performance evaluation ; Prefetching ; Propagation delay ; Shape control</subject><ispartof>IEEE transactions on knowledge and data engineering, 2003-09, Vol.15 (5), p.1155-1169</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-f3c8ae6e7df084df40fb09720908ed173b3d25803aa3beccbd40f74c7c506aee3</citedby><cites>FETCH-LOGICAL-c384t-f3c8ae6e7df084df40fb09720908ed173b3d25803aa3beccbd40f74c7c506aee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1232270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1232270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nanopoulos, A.</creatorcontrib><creatorcontrib>Katsaros, D.</creatorcontrib><creatorcontrib>Manolopoulos, Y.</creatorcontrib><title>A data mining algorithm for generalized Web prefetching</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Predictive Web prefetching refers to the mechanism of deducing the forthcoming page accesses of a client based on its past accesses. In this paper, we present a new context for the interpretation of Web prefetching algorithms as Markov predictors. We identify the factors that affect the performance of Web prefetching algorithms. We propose a new algorithm called WM,,, which is based on data mining and is proven to be a generalization of existing ones. It was designed to address their specific limitations and its characteristics include all the above factors. It compares favorably with previously proposed algorithms. Further, the algorithm efficiently addresses the increased number of candidates. We present a detailed performance evaluation of WM, with synthetic and real data. The experimental results show that WM/sub o/ can provide significant improvements over previously proposed Web prefetching algorithms.</description><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Communication system traffic control</subject><subject>Computer Society</subject><subject>Costs</subject><subject>Data mining</subject><subject>Internet</subject><subject>Markov processes</subject><subject>Network servers</subject><subject>Performance evaluation</subject><subject>Prefetching</subject><subject>Propagation delay</subject><subject>Shape control</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0T1PwzAQBmALgUQp_ADEEjHAlHL-SGyPFZQPUYmliNFynEubKk2KnQ7w63FpJSQGWGxL95wt30vIOYURpaBvZs93kxED4CPKOGMSDsiAZplKGdX0MJ5B0FRwIY_JSQhLAFBS0QGR46S0vU1WdVu388Q2887X_WKVVJ1P5tiit039iWXyhkWy9lhh7xZRnpKjyjYBz_b7kLzeT2a3j-n05eHpdjxNHVeiTyvulMUcZVmBEmUloCpASwYaFJZU8oKXLFPAreUFOleUUUjhpMsgt4h8SK539659977B0JtVHRw2jW2x2wSjgUoKTPMor_6UTDPI4_I_VCxnSskIL3_BZbfxbfyu0YwJBvz7WbpDznchxAGZta9X1n8YCmYbjdlGY7bRmH00sedi11Mj4o_fV78AMsGIjw</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Nanopoulos, A.</creator><creator>Katsaros, D.</creator><creator>Manolopoulos, Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>20030901</creationdate><title>A data mining algorithm for generalized Web prefetching</title><author>Nanopoulos, A. ; Katsaros, D. ; Manolopoulos, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-f3c8ae6e7df084df40fb09720908ed173b3d25803aa3beccbd40f74c7c506aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Communication system traffic control</topic><topic>Computer Society</topic><topic>Costs</topic><topic>Data mining</topic><topic>Internet</topic><topic>Markov processes</topic><topic>Network servers</topic><topic>Performance evaluation</topic><topic>Prefetching</topic><topic>Propagation delay</topic><topic>Shape control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nanopoulos, A.</creatorcontrib><creatorcontrib>Katsaros, D.</creatorcontrib><creatorcontrib>Manolopoulos, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nanopoulos, A.</au><au>Katsaros, D.</au><au>Manolopoulos, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data mining algorithm for generalized Web prefetching</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2003-09-01</date><risdate>2003</risdate><volume>15</volume><issue>5</issue><spage>1155</spage><epage>1169</epage><pages>1155-1169</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Predictive Web prefetching refers to the mechanism of deducing the forthcoming page accesses of a client based on its past accesses. In this paper, we present a new context for the interpretation of Web prefetching algorithms as Markov predictors. We identify the factors that affect the performance of Web prefetching algorithms. We propose a new algorithm called WM,,, which is based on data mining and is proven to be a generalization of existing ones. It was designed to address their specific limitations and its characteristics include all the above factors. It compares favorably with previously proposed algorithms. Further, the algorithm efficiently addresses the increased number of candidates. We present a detailed performance evaluation of WM, with synthetic and real data. The experimental results show that WM/sub o/ can provide significant improvements over previously proposed Web prefetching algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2003.1232270</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2003-09, Vol.15 (5), p.1155-1169 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_ieee_primary_1232270 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bandwidth Communication system traffic control Computer Society Costs Data mining Internet Markov processes Network servers Performance evaluation Prefetching Propagation delay Shape control |
title | A data mining algorithm for generalized Web prefetching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%20mining%20algorithm%20for%20generalized%20Web%20prefetching&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Nanopoulos,%20A.&rft.date=2003-09-01&rft.volume=15&rft.issue=5&rft.spage=1155&rft.epage=1169&rft.pages=1155-1169&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2003.1232270&rft_dat=%3Cproquest_RIE%3E2591241071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922420393&rft_id=info:pmid/&rft_ieee_id=1232270&rfr_iscdi=true |