A data mining algorithm for generalized Web prefetching

Predictive Web prefetching refers to the mechanism of deducing the forthcoming page accesses of a client based on its past accesses. In this paper, we present a new context for the interpretation of Web prefetching algorithms as Markov predictors. We identify the factors that affect the performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2003-09, Vol.15 (5), p.1155-1169
Hauptverfasser: Nanopoulos, A., Katsaros, D., Manolopoulos, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1169
container_issue 5
container_start_page 1155
container_title IEEE transactions on knowledge and data engineering
container_volume 15
creator Nanopoulos, A.
Katsaros, D.
Manolopoulos, Y.
description Predictive Web prefetching refers to the mechanism of deducing the forthcoming page accesses of a client based on its past accesses. In this paper, we present a new context for the interpretation of Web prefetching algorithms as Markov predictors. We identify the factors that affect the performance of Web prefetching algorithms. We propose a new algorithm called WM,,, which is based on data mining and is proven to be a generalization of existing ones. It was designed to address their specific limitations and its characteristics include all the above factors. It compares favorably with previously proposed algorithms. Further, the algorithm efficiently addresses the increased number of candidates. We present a detailed performance evaluation of WM, with synthetic and real data. The experimental results show that WM/sub o/ can provide significant improvements over previously proposed Web prefetching algorithms.
doi_str_mv 10.1109/TKDE.2003.1232270
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1232270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1232270</ieee_id><sourcerecordid>2591241071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-f3c8ae6e7df084df40fb09720908ed173b3d25803aa3beccbd40f74c7c506aee3</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgUQp_ADEEjHAlHL-SGyPFZQPUYmliNFynEubKk2KnQ7w63FpJSQGWGxL95wt30vIOYURpaBvZs93kxED4CPKOGMSDsiAZplKGdX0MJ5B0FRwIY_JSQhLAFBS0QGR46S0vU1WdVu388Q2887X_WKVVJ1P5tiit039iWXyhkWy9lhh7xZRnpKjyjYBz_b7kLzeT2a3j-n05eHpdjxNHVeiTyvulMUcZVmBEmUloCpASwYaFJZU8oKXLFPAreUFOleUUUjhpMsgt4h8SK539659977B0JtVHRw2jW2x2wSjgUoKTPMor_6UTDPI4_I_VCxnSskIL3_BZbfxbfyu0YwJBvz7WbpDznchxAGZta9X1n8YCmYbjdlGY7bRmH00sedi11Mj4o_fV78AMsGIjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922420393</pqid></control><display><type>article</type><title>A data mining algorithm for generalized Web prefetching</title><source>IEEE Electronic Library (IEL)</source><creator>Nanopoulos, A. ; Katsaros, D. ; Manolopoulos, Y.</creator><creatorcontrib>Nanopoulos, A. ; Katsaros, D. ; Manolopoulos, Y.</creatorcontrib><description>Predictive Web prefetching refers to the mechanism of deducing the forthcoming page accesses of a client based on its past accesses. In this paper, we present a new context for the interpretation of Web prefetching algorithms as Markov predictors. We identify the factors that affect the performance of Web prefetching algorithms. We propose a new algorithm called WM,,, which is based on data mining and is proven to be a generalization of existing ones. It was designed to address their specific limitations and its characteristics include all the above factors. It compares favorably with previously proposed algorithms. Further, the algorithm efficiently addresses the increased number of candidates. We present a detailed performance evaluation of WM, with synthetic and real data. The experimental results show that WM/sub o/ can provide significant improvements over previously proposed Web prefetching algorithms.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2003.1232270</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bandwidth ; Communication system traffic control ; Computer Society ; Costs ; Data mining ; Internet ; Markov processes ; Network servers ; Performance evaluation ; Prefetching ; Propagation delay ; Shape control</subject><ispartof>IEEE transactions on knowledge and data engineering, 2003-09, Vol.15 (5), p.1155-1169</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-f3c8ae6e7df084df40fb09720908ed173b3d25803aa3beccbd40f74c7c506aee3</citedby><cites>FETCH-LOGICAL-c384t-f3c8ae6e7df084df40fb09720908ed173b3d25803aa3beccbd40f74c7c506aee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1232270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1232270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nanopoulos, A.</creatorcontrib><creatorcontrib>Katsaros, D.</creatorcontrib><creatorcontrib>Manolopoulos, Y.</creatorcontrib><title>A data mining algorithm for generalized Web prefetching</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Predictive Web prefetching refers to the mechanism of deducing the forthcoming page accesses of a client based on its past accesses. In this paper, we present a new context for the interpretation of Web prefetching algorithms as Markov predictors. We identify the factors that affect the performance of Web prefetching algorithms. We propose a new algorithm called WM,,, which is based on data mining and is proven to be a generalization of existing ones. It was designed to address their specific limitations and its characteristics include all the above factors. It compares favorably with previously proposed algorithms. Further, the algorithm efficiently addresses the increased number of candidates. We present a detailed performance evaluation of WM, with synthetic and real data. The experimental results show that WM/sub o/ can provide significant improvements over previously proposed Web prefetching algorithms.</description><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Communication system traffic control</subject><subject>Computer Society</subject><subject>Costs</subject><subject>Data mining</subject><subject>Internet</subject><subject>Markov processes</subject><subject>Network servers</subject><subject>Performance evaluation</subject><subject>Prefetching</subject><subject>Propagation delay</subject><subject>Shape control</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0T1PwzAQBmALgUQp_ADEEjHAlHL-SGyPFZQPUYmliNFynEubKk2KnQ7w63FpJSQGWGxL95wt30vIOYURpaBvZs93kxED4CPKOGMSDsiAZplKGdX0MJ5B0FRwIY_JSQhLAFBS0QGR46S0vU1WdVu388Q2887X_WKVVJ1P5tiit039iWXyhkWy9lhh7xZRnpKjyjYBz_b7kLzeT2a3j-n05eHpdjxNHVeiTyvulMUcZVmBEmUloCpASwYaFJZU8oKXLFPAreUFOleUUUjhpMsgt4h8SK539659977B0JtVHRw2jW2x2wSjgUoKTPMor_6UTDPI4_I_VCxnSskIL3_BZbfxbfyu0YwJBvz7WbpDznchxAGZta9X1n8YCmYbjdlGY7bRmH00sedi11Mj4o_fV78AMsGIjw</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Nanopoulos, A.</creator><creator>Katsaros, D.</creator><creator>Manolopoulos, Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>20030901</creationdate><title>A data mining algorithm for generalized Web prefetching</title><author>Nanopoulos, A. ; Katsaros, D. ; Manolopoulos, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-f3c8ae6e7df084df40fb09720908ed173b3d25803aa3beccbd40f74c7c506aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Communication system traffic control</topic><topic>Computer Society</topic><topic>Costs</topic><topic>Data mining</topic><topic>Internet</topic><topic>Markov processes</topic><topic>Network servers</topic><topic>Performance evaluation</topic><topic>Prefetching</topic><topic>Propagation delay</topic><topic>Shape control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nanopoulos, A.</creatorcontrib><creatorcontrib>Katsaros, D.</creatorcontrib><creatorcontrib>Manolopoulos, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nanopoulos, A.</au><au>Katsaros, D.</au><au>Manolopoulos, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data mining algorithm for generalized Web prefetching</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2003-09-01</date><risdate>2003</risdate><volume>15</volume><issue>5</issue><spage>1155</spage><epage>1169</epage><pages>1155-1169</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Predictive Web prefetching refers to the mechanism of deducing the forthcoming page accesses of a client based on its past accesses. In this paper, we present a new context for the interpretation of Web prefetching algorithms as Markov predictors. We identify the factors that affect the performance of Web prefetching algorithms. We propose a new algorithm called WM,,, which is based on data mining and is proven to be a generalization of existing ones. It was designed to address their specific limitations and its characteristics include all the above factors. It compares favorably with previously proposed algorithms. Further, the algorithm efficiently addresses the increased number of candidates. We present a detailed performance evaluation of WM, with synthetic and real data. The experimental results show that WM/sub o/ can provide significant improvements over previously proposed Web prefetching algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2003.1232270</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2003-09, Vol.15 (5), p.1155-1169
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_1232270
source IEEE Electronic Library (IEL)
subjects Algorithms
Bandwidth
Communication system traffic control
Computer Society
Costs
Data mining
Internet
Markov processes
Network servers
Performance evaluation
Prefetching
Propagation delay
Shape control
title A data mining algorithm for generalized Web prefetching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%20mining%20algorithm%20for%20generalized%20Web%20prefetching&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Nanopoulos,%20A.&rft.date=2003-09-01&rft.volume=15&rft.issue=5&rft.spage=1155&rft.epage=1169&rft.pages=1155-1169&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2003.1232270&rft_dat=%3Cproquest_RIE%3E2591241071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922420393&rft_id=info:pmid/&rft_ieee_id=1232270&rfr_iscdi=true