Estimating motion from MRI data
Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 2003-10, Vol.91 (10), p.1627-1648 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1648 |
---|---|
container_issue | 10 |
container_start_page | 1627 |
container_title | Proceedings of the IEEE |
container_volume | 91 |
creator | Ozturk, C. Derbyshire, J.A. McVeigh, E.R.M. |
description | Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges of tissues can be tracked by image processing techniques. Additionally, MRI permits the source of the image signal to be manipulated. For example, temporary magnetic tags displaying a pattern of variable brightness may be placed in the object using MR saturation techniques, giving the user a known pattern to detect for motion tracking. The MRI signal is a modulated complex quantity, being derived from a rotating magnetic field in the form of an induced current. Well-defined patterns can also be introduced into the phase of the magnetization, and could be thought of as generalized tags. If the phase of each pixel is preserved during image reconstruction, relative phase shifts can be used to directly encode displacement, velocity and acceleration. New methods for modeling motion fields from MRI have now found application in cardiovascular and other soft tissue imaging. In this review, we shall describe the methods used for encoding, imaging, and modeling motion fields with MRI. |
doi_str_mv | 10.1109/JPROC.2003.817872 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1232197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1232197</ieee_id><sourcerecordid>1022911121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-5934b96a4efa028f9f0982de5c44b9fc521b68aa3e713cb27ff083d5f78711953</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMotlZ_gAi6eNHL1kw-dpOLIKV-UakUPYd0m9Qt3U3d7Ar-e1NbrHrQUyDzzOTNPAgdAu4CYHlx_zga9roEY9oVkIqUbKE2cC5iQniyjdoYg4glAdlCe97PcAB5QndRC4TkAgS00Unf13mh67ycRoWrc1dGtnJF9DC6iya61vtox-q5Nwfrs4Oer_tPvdt4MLy5610N4owD1DGXlI1lopmxGhNhpcVSkInhGQv3NuMExonQmpoUaDYmqbVY0Am3ITWA5LSDLldzF824MJPMlHWl52pRhXDVu3I6Vz8rZf6ipu5NEZ4yRmUYcLYeULnXxvhaFbnPzHyuS-MarySGNCSjy6fO_yQhQJyRkP9_FBMiAYBAQE9_oTPXVGXYmRKCEZZQSAIEKyirnPeVsV8fBKyWStWnUrVUqlZKQ8_x981sOtYOA3C0AnJjzKZMaBCf0g-XgqJz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884246316</pqid></control><display><type>article</type><title>Estimating motion from MRI data</title><source>IEEE Electronic Library (IEL)</source><creator>Ozturk, C. ; Derbyshire, J.A. ; McVeigh, E.R.M.</creator><creatorcontrib>Ozturk, C. ; Derbyshire, J.A. ; McVeigh, E.R.M.</creatorcontrib><description>Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges of tissues can be tracked by image processing techniques. Additionally, MRI permits the source of the image signal to be manipulated. For example, temporary magnetic tags displaying a pattern of variable brightness may be placed in the object using MR saturation techniques, giving the user a known pattern to detect for motion tracking. The MRI signal is a modulated complex quantity, being derived from a rotating magnetic field in the form of an induced current. Well-defined patterns can also be introduced into the phase of the magnetization, and could be thought of as generalized tags. If the phase of each pixel is preserved during image reconstruction, relative phase shifts can be used to directly encode displacement, velocity and acceleration. New methods for modeling motion fields from MRI have now found application in cardiovascular and other soft tissue imaging. In this review, we shall describe the methods used for encoding, imaging, and modeling motion fields with MRI.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2003.817872</identifier><identifier>PMID: 18958181</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological tissues ; Blood flow ; Brightness ; Estimating ; Fluid flow measurement ; Image contrast ; Image edge detection ; Image processing ; Imaging ; Magnetic resonance imaging ; Magnetization ; Mathematical models ; Motion estimation ; Motion measurement ; NMR ; Nuclear magnetic resonance ; Saturation magnetization ; Soft tissues ; Tags</subject><ispartof>Proceedings of the IEEE, 2003-10, Vol.91 (10), p.1627-1648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-5934b96a4efa028f9f0982de5c44b9fc521b68aa3e713cb27ff083d5f78711953</citedby><cites>FETCH-LOGICAL-c511t-5934b96a4efa028f9f0982de5c44b9fc521b68aa3e713cb27ff083d5f78711953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1232197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1232197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18958181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozturk, C.</creatorcontrib><creatorcontrib>Derbyshire, J.A.</creatorcontrib><creatorcontrib>McVeigh, E.R.M.</creatorcontrib><title>Estimating motion from MRI data</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><addtitle>Proc IEEE Inst Electr Electron Eng</addtitle><description>Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges of tissues can be tracked by image processing techniques. Additionally, MRI permits the source of the image signal to be manipulated. For example, temporary magnetic tags displaying a pattern of variable brightness may be placed in the object using MR saturation techniques, giving the user a known pattern to detect for motion tracking. The MRI signal is a modulated complex quantity, being derived from a rotating magnetic field in the form of an induced current. Well-defined patterns can also be introduced into the phase of the magnetization, and could be thought of as generalized tags. If the phase of each pixel is preserved during image reconstruction, relative phase shifts can be used to directly encode displacement, velocity and acceleration. New methods for modeling motion fields from MRI have now found application in cardiovascular and other soft tissue imaging. In this review, we shall describe the methods used for encoding, imaging, and modeling motion fields with MRI.</description><subject>Biological tissues</subject><subject>Blood flow</subject><subject>Brightness</subject><subject>Estimating</subject><subject>Fluid flow measurement</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Imaging</subject><subject>Magnetic resonance imaging</subject><subject>Magnetization</subject><subject>Mathematical models</subject><subject>Motion estimation</subject><subject>Motion measurement</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Saturation magnetization</subject><subject>Soft tissues</subject><subject>Tags</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1LAzEQhoMotlZ_gAi6eNHL1kw-dpOLIKV-UakUPYd0m9Qt3U3d7Ar-e1NbrHrQUyDzzOTNPAgdAu4CYHlx_zga9roEY9oVkIqUbKE2cC5iQniyjdoYg4glAdlCe97PcAB5QndRC4TkAgS00Unf13mh67ycRoWrc1dGtnJF9DC6iya61vtox-q5Nwfrs4Oer_tPvdt4MLy5610N4owD1DGXlI1lopmxGhNhpcVSkInhGQv3NuMExonQmpoUaDYmqbVY0Am3ITWA5LSDLldzF824MJPMlHWl52pRhXDVu3I6Vz8rZf6ipu5NEZ4yRmUYcLYeULnXxvhaFbnPzHyuS-MarySGNCSjy6fO_yQhQJyRkP9_FBMiAYBAQE9_oTPXVGXYmRKCEZZQSAIEKyirnPeVsV8fBKyWStWnUrVUqlZKQ8_x981sOtYOA3C0AnJjzKZMaBCf0g-XgqJz</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Ozturk, C.</creator><creator>Derbyshire, J.A.</creator><creator>McVeigh, E.R.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031001</creationdate><title>Estimating motion from MRI data</title><author>Ozturk, C. ; Derbyshire, J.A. ; McVeigh, E.R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-5934b96a4efa028f9f0982de5c44b9fc521b68aa3e713cb27ff083d5f78711953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological tissues</topic><topic>Blood flow</topic><topic>Brightness</topic><topic>Estimating</topic><topic>Fluid flow measurement</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Imaging</topic><topic>Magnetic resonance imaging</topic><topic>Magnetization</topic><topic>Mathematical models</topic><topic>Motion estimation</topic><topic>Motion measurement</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Saturation magnetization</topic><topic>Soft tissues</topic><topic>Tags</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozturk, C.</creatorcontrib><creatorcontrib>Derbyshire, J.A.</creatorcontrib><creatorcontrib>McVeigh, E.R.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozturk, C.</au><au>Derbyshire, J.A.</au><au>McVeigh, E.R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating motion from MRI data</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><addtitle>Proc IEEE Inst Electr Electron Eng</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>91</volume><issue>10</issue><spage>1627</spage><epage>1648</epage><pages>1627-1648</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges of tissues can be tracked by image processing techniques. Additionally, MRI permits the source of the image signal to be manipulated. For example, temporary magnetic tags displaying a pattern of variable brightness may be placed in the object using MR saturation techniques, giving the user a known pattern to detect for motion tracking. The MRI signal is a modulated complex quantity, being derived from a rotating magnetic field in the form of an induced current. Well-defined patterns can also be introduced into the phase of the magnetization, and could be thought of as generalized tags. If the phase of each pixel is preserved during image reconstruction, relative phase shifts can be used to directly encode displacement, velocity and acceleration. New methods for modeling motion fields from MRI have now found application in cardiovascular and other soft tissue imaging. In this review, we shall describe the methods used for encoding, imaging, and modeling motion fields with MRI.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18958181</pmid><doi>10.1109/JPROC.2003.817872</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2003-10, Vol.91 (10), p.1627-1648 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_ieee_primary_1232197 |
source | IEEE Electronic Library (IEL) |
subjects | Biological tissues Blood flow Brightness Estimating Fluid flow measurement Image contrast Image edge detection Image processing Imaging Magnetic resonance imaging Magnetization Mathematical models Motion estimation Motion measurement NMR Nuclear magnetic resonance Saturation magnetization Soft tissues Tags |
title | Estimating motion from MRI data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20motion%20from%20MRI%20data&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Ozturk,%20C.&rft.date=2003-10-01&rft.volume=91&rft.issue=10&rft.spage=1627&rft.epage=1648&rft.pages=1627-1648&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2003.817872&rft_dat=%3Cproquest_RIE%3E1022911121%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884246316&rft_id=info:pmid/18958181&rft_ieee_id=1232197&rfr_iscdi=true |