Estimating motion from MRI data

Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2003-10, Vol.91 (10), p.1627-1648
Hauptverfasser: Ozturk, C., Derbyshire, J.A., McVeigh, E.R.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1648
container_issue 10
container_start_page 1627
container_title Proceedings of the IEEE
container_volume 91
creator Ozturk, C.
Derbyshire, J.A.
McVeigh, E.R.M.
description Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges of tissues can be tracked by image processing techniques. Additionally, MRI permits the source of the image signal to be manipulated. For example, temporary magnetic tags displaying a pattern of variable brightness may be placed in the object using MR saturation techniques, giving the user a known pattern to detect for motion tracking. The MRI signal is a modulated complex quantity, being derived from a rotating magnetic field in the form of an induced current. Well-defined patterns can also be introduced into the phase of the magnetization, and could be thought of as generalized tags. If the phase of each pixel is preserved during image reconstruction, relative phase shifts can be used to directly encode displacement, velocity and acceleration. New methods for modeling motion fields from MRI have now found application in cardiovascular and other soft tissue imaging. In this review, we shall describe the methods used for encoding, imaging, and modeling motion fields with MRI.
doi_str_mv 10.1109/JPROC.2003.817872
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1232197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1232197</ieee_id><sourcerecordid>1022911121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-5934b96a4efa028f9f0982de5c44b9fc521b68aa3e713cb27ff083d5f78711953</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMotlZ_gAi6eNHL1kw-dpOLIKV-UakUPYd0m9Qt3U3d7Ar-e1NbrHrQUyDzzOTNPAgdAu4CYHlx_zga9roEY9oVkIqUbKE2cC5iQniyjdoYg4glAdlCe97PcAB5QndRC4TkAgS00Unf13mh67ycRoWrc1dGtnJF9DC6iya61vtox-q5Nwfrs4Oer_tPvdt4MLy5610N4owD1DGXlI1lopmxGhNhpcVSkInhGQv3NuMExonQmpoUaDYmqbVY0Am3ITWA5LSDLldzF824MJPMlHWl52pRhXDVu3I6Vz8rZf6ipu5NEZ4yRmUYcLYeULnXxvhaFbnPzHyuS-MarySGNCSjy6fO_yQhQJyRkP9_FBMiAYBAQE9_oTPXVGXYmRKCEZZQSAIEKyirnPeVsV8fBKyWStWnUrVUqlZKQ8_x981sOtYOA3C0AnJjzKZMaBCf0g-XgqJz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884246316</pqid></control><display><type>article</type><title>Estimating motion from MRI data</title><source>IEEE Electronic Library (IEL)</source><creator>Ozturk, C. ; Derbyshire, J.A. ; McVeigh, E.R.M.</creator><creatorcontrib>Ozturk, C. ; Derbyshire, J.A. ; McVeigh, E.R.M.</creatorcontrib><description>Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges of tissues can be tracked by image processing techniques. Additionally, MRI permits the source of the image signal to be manipulated. For example, temporary magnetic tags displaying a pattern of variable brightness may be placed in the object using MR saturation techniques, giving the user a known pattern to detect for motion tracking. The MRI signal is a modulated complex quantity, being derived from a rotating magnetic field in the form of an induced current. Well-defined patterns can also be introduced into the phase of the magnetization, and could be thought of as generalized tags. If the phase of each pixel is preserved during image reconstruction, relative phase shifts can be used to directly encode displacement, velocity and acceleration. New methods for modeling motion fields from MRI have now found application in cardiovascular and other soft tissue imaging. In this review, we shall describe the methods used for encoding, imaging, and modeling motion fields with MRI.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2003.817872</identifier><identifier>PMID: 18958181</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological tissues ; Blood flow ; Brightness ; Estimating ; Fluid flow measurement ; Image contrast ; Image edge detection ; Image processing ; Imaging ; Magnetic resonance imaging ; Magnetization ; Mathematical models ; Motion estimation ; Motion measurement ; NMR ; Nuclear magnetic resonance ; Saturation magnetization ; Soft tissues ; Tags</subject><ispartof>Proceedings of the IEEE, 2003-10, Vol.91 (10), p.1627-1648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-5934b96a4efa028f9f0982de5c44b9fc521b68aa3e713cb27ff083d5f78711953</citedby><cites>FETCH-LOGICAL-c511t-5934b96a4efa028f9f0982de5c44b9fc521b68aa3e713cb27ff083d5f78711953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1232197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1232197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18958181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozturk, C.</creatorcontrib><creatorcontrib>Derbyshire, J.A.</creatorcontrib><creatorcontrib>McVeigh, E.R.M.</creatorcontrib><title>Estimating motion from MRI data</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><addtitle>Proc IEEE Inst Electr Electron Eng</addtitle><description>Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges of tissues can be tracked by image processing techniques. Additionally, MRI permits the source of the image signal to be manipulated. For example, temporary magnetic tags displaying a pattern of variable brightness may be placed in the object using MR saturation techniques, giving the user a known pattern to detect for motion tracking. The MRI signal is a modulated complex quantity, being derived from a rotating magnetic field in the form of an induced current. Well-defined patterns can also be introduced into the phase of the magnetization, and could be thought of as generalized tags. If the phase of each pixel is preserved during image reconstruction, relative phase shifts can be used to directly encode displacement, velocity and acceleration. New methods for modeling motion fields from MRI have now found application in cardiovascular and other soft tissue imaging. In this review, we shall describe the methods used for encoding, imaging, and modeling motion fields with MRI.</description><subject>Biological tissues</subject><subject>Blood flow</subject><subject>Brightness</subject><subject>Estimating</subject><subject>Fluid flow measurement</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Imaging</subject><subject>Magnetic resonance imaging</subject><subject>Magnetization</subject><subject>Mathematical models</subject><subject>Motion estimation</subject><subject>Motion measurement</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Saturation magnetization</subject><subject>Soft tissues</subject><subject>Tags</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1LAzEQhoMotlZ_gAi6eNHL1kw-dpOLIKV-UakUPYd0m9Qt3U3d7Ar-e1NbrHrQUyDzzOTNPAgdAu4CYHlx_zga9roEY9oVkIqUbKE2cC5iQniyjdoYg4glAdlCe97PcAB5QndRC4TkAgS00Unf13mh67ycRoWrc1dGtnJF9DC6iya61vtox-q5Nwfrs4Oer_tPvdt4MLy5610N4owD1DGXlI1lopmxGhNhpcVSkInhGQv3NuMExonQmpoUaDYmqbVY0Am3ITWA5LSDLldzF824MJPMlHWl52pRhXDVu3I6Vz8rZf6ipu5NEZ4yRmUYcLYeULnXxvhaFbnPzHyuS-MarySGNCSjy6fO_yQhQJyRkP9_FBMiAYBAQE9_oTPXVGXYmRKCEZZQSAIEKyirnPeVsV8fBKyWStWnUrVUqlZKQ8_x981sOtYOA3C0AnJjzKZMaBCf0g-XgqJz</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Ozturk, C.</creator><creator>Derbyshire, J.A.</creator><creator>McVeigh, E.R.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031001</creationdate><title>Estimating motion from MRI data</title><author>Ozturk, C. ; Derbyshire, J.A. ; McVeigh, E.R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-5934b96a4efa028f9f0982de5c44b9fc521b68aa3e713cb27ff083d5f78711953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological tissues</topic><topic>Blood flow</topic><topic>Brightness</topic><topic>Estimating</topic><topic>Fluid flow measurement</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Imaging</topic><topic>Magnetic resonance imaging</topic><topic>Magnetization</topic><topic>Mathematical models</topic><topic>Motion estimation</topic><topic>Motion measurement</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Saturation magnetization</topic><topic>Soft tissues</topic><topic>Tags</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozturk, C.</creatorcontrib><creatorcontrib>Derbyshire, J.A.</creatorcontrib><creatorcontrib>McVeigh, E.R.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozturk, C.</au><au>Derbyshire, J.A.</au><au>McVeigh, E.R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating motion from MRI data</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><addtitle>Proc IEEE Inst Electr Electron Eng</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>91</volume><issue>10</issue><spage>1627</spage><epage>1648</epage><pages>1627-1648</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges of tissues can be tracked by image processing techniques. Additionally, MRI permits the source of the image signal to be manipulated. For example, temporary magnetic tags displaying a pattern of variable brightness may be placed in the object using MR saturation techniques, giving the user a known pattern to detect for motion tracking. The MRI signal is a modulated complex quantity, being derived from a rotating magnetic field in the form of an induced current. Well-defined patterns can also be introduced into the phase of the magnetization, and could be thought of as generalized tags. If the phase of each pixel is preserved during image reconstruction, relative phase shifts can be used to directly encode displacement, velocity and acceleration. New methods for modeling motion fields from MRI have now found application in cardiovascular and other soft tissue imaging. In this review, we shall describe the methods used for encoding, imaging, and modeling motion fields with MRI.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18958181</pmid><doi>10.1109/JPROC.2003.817872</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2003-10, Vol.91 (10), p.1627-1648
issn 0018-9219
1558-2256
language eng
recordid cdi_ieee_primary_1232197
source IEEE Electronic Library (IEL)
subjects Biological tissues
Blood flow
Brightness
Estimating
Fluid flow measurement
Image contrast
Image edge detection
Image processing
Imaging
Magnetic resonance imaging
Magnetization
Mathematical models
Motion estimation
Motion measurement
NMR
Nuclear magnetic resonance
Saturation magnetization
Soft tissues
Tags
title Estimating motion from MRI data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20motion%20from%20MRI%20data&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Ozturk,%20C.&rft.date=2003-10-01&rft.volume=91&rft.issue=10&rft.spage=1627&rft.epage=1648&rft.pages=1627-1648&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2003.817872&rft_dat=%3Cproquest_RIE%3E1022911121%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884246316&rft_id=info:pmid/18958181&rft_ieee_id=1232197&rfr_iscdi=true