A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles

A general and simple algorithm is presented which computes the set FP of all free configurations for a polygonal object I (with m edges) which is free to translate and/or to rotate but not to intersect another polygonal object E. The worst-case time complexity of the algorithm is O(m/sup 3/n/sup 3/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Avnaim, F., Boissonnat, J.D., Faverjon, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1661 vol.3
container_issue
container_start_page 1656
container_title
container_volume
creator Avnaim, F.
Boissonnat, J.D.
Faverjon, B.
description A general and simple algorithm is presented which computes the set FP of all free configurations for a polygonal object I (with m edges) which is free to translate and/or to rotate but not to intersect another polygonal object E. The worst-case time complexity of the algorithm is O(m/sup 3/n/sup 3/ log mn), which is close to optimal. FP is a three-dimensional curved object which can be used to find free motions within the same time bounds. Two types of motion have been studied in some detail. Motion in contact, where I remains in contact with E, is performed by moving along the faces of the boundary of FP. By partitioning FP into prisms, it is possible to compute motions when I never makes contact with E. In this case, the theoretical complexity does not exceed O(m/sup 6/n/sup 6/ alpha (mn)) but it is expected to be much smaller in practice. In both cases, pseudo-optimal motions can be obtained with a complexity increased by a factor log mn.< >
doi_str_mv 10.1109/ROBOT.1988.12304
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_12304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>12304</ieee_id><sourcerecordid>12304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1754-d6ef9e40ee1686e3555bf515cfe74d1b84a8f01d394f9895ef5758c7852836353</originalsourceid><addsrcrecordid>eNpVj01LxDAYhAMiqOve9ZY_sDXZ5E3T47r4BQsFWW_CkqZvapa0KU0O7r-3flycywzMMPAQcsNZwTmr7l7r-3pf8Errgq8Fk2fkimmuFdOw1hdkmdKRzZICpIJL8r6h42Rs9tYEip9zon3MPg50DGYY_NBRE7o4-fzRUxcnOsZw6uIwr2NzRJsTNb1vU_5XpGxswHRNzp0JCZd_viBvjw_77fNqVz-9bDe7leUlyFWr0FUoGSJXWqEAgMYBB-uwlC1vtDTaMd6KSrpKV4AOStC2_CYSSoBYkNvfX4-Ih3HyvZlOhx988QWMx1HL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Avnaim, F. ; Boissonnat, J.D. ; Faverjon, B.</creator><creatorcontrib>Avnaim, F. ; Boissonnat, J.D. ; Faverjon, B.</creatorcontrib><description>A general and simple algorithm is presented which computes the set FP of all free configurations for a polygonal object I (with m edges) which is free to translate and/or to rotate but not to intersect another polygonal object E. The worst-case time complexity of the algorithm is O(m/sup 3/n/sup 3/ log mn), which is close to optimal. FP is a three-dimensional curved object which can be used to find free motions within the same time bounds. Two types of motion have been studied in some detail. Motion in contact, where I remains in contact with E, is performed by moving along the faces of the boundary of FP. By partitioning FP into prisms, it is possible to compute motions when I never makes contact with E. In this case, the theoretical complexity does not exceed O(m/sup 6/n/sup 6/ alpha (mn)) but it is expected to be much smaller in practice. In both cases, pseudo-optimal motions can be obtained with a complexity increased by a factor log mn.&lt; &gt;</description><identifier>ISBN: 0818608528</identifier><identifier>ISBN: 9780818608520</identifier><identifier>DOI: 10.1109/ROBOT.1988.12304</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Joining processes</subject><ispartof>Proceedings. 1988 IEEE International Conference on Robotics and Automation, 1988, p.1656-1661 vol.3</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1754-d6ef9e40ee1686e3555bf515cfe74d1b84a8f01d394f9895ef5758c7852836353</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/12304$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/12304$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Avnaim, F.</creatorcontrib><creatorcontrib>Boissonnat, J.D.</creatorcontrib><creatorcontrib>Faverjon, B.</creatorcontrib><title>A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles</title><title>Proceedings. 1988 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>A general and simple algorithm is presented which computes the set FP of all free configurations for a polygonal object I (with m edges) which is free to translate and/or to rotate but not to intersect another polygonal object E. The worst-case time complexity of the algorithm is O(m/sup 3/n/sup 3/ log mn), which is close to optimal. FP is a three-dimensional curved object which can be used to find free motions within the same time bounds. Two types of motion have been studied in some detail. Motion in contact, where I remains in contact with E, is performed by moving along the faces of the boundary of FP. By partitioning FP into prisms, it is possible to compute motions when I never makes contact with E. In this case, the theoretical complexity does not exceed O(m/sup 6/n/sup 6/ alpha (mn)) but it is expected to be much smaller in practice. In both cases, pseudo-optimal motions can be obtained with a complexity increased by a factor log mn.&lt; &gt;</description><subject>Joining processes</subject><isbn>0818608528</isbn><isbn>9780818608520</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1988</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj01LxDAYhAMiqOve9ZY_sDXZ5E3T47r4BQsFWW_CkqZvapa0KU0O7r-3flycywzMMPAQcsNZwTmr7l7r-3pf8Errgq8Fk2fkimmuFdOw1hdkmdKRzZICpIJL8r6h42Rs9tYEip9zon3MPg50DGYY_NBRE7o4-fzRUxcnOsZw6uIwr2NzRJsTNb1vU_5XpGxswHRNzp0JCZd_viBvjw_77fNqVz-9bDe7leUlyFWr0FUoGSJXWqEAgMYBB-uwlC1vtDTaMd6KSrpKV4AOStC2_CYSSoBYkNvfX4-Ih3HyvZlOhx988QWMx1HL</recordid><startdate>1988</startdate><enddate>1988</enddate><creator>Avnaim, F.</creator><creator>Boissonnat, J.D.</creator><creator>Faverjon, B.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1988</creationdate><title>A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles</title><author>Avnaim, F. ; Boissonnat, J.D. ; Faverjon, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1754-d6ef9e40ee1686e3555bf515cfe74d1b84a8f01d394f9895ef5758c7852836353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Joining processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Avnaim, F.</creatorcontrib><creatorcontrib>Boissonnat, J.D.</creatorcontrib><creatorcontrib>Faverjon, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Avnaim, F.</au><au>Boissonnat, J.D.</au><au>Faverjon, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles</atitle><btitle>Proceedings. 1988 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>1988</date><risdate>1988</risdate><spage>1656</spage><epage>1661 vol.3</epage><pages>1656-1661 vol.3</pages><isbn>0818608528</isbn><isbn>9780818608520</isbn><abstract>A general and simple algorithm is presented which computes the set FP of all free configurations for a polygonal object I (with m edges) which is free to translate and/or to rotate but not to intersect another polygonal object E. The worst-case time complexity of the algorithm is O(m/sup 3/n/sup 3/ log mn), which is close to optimal. FP is a three-dimensional curved object which can be used to find free motions within the same time bounds. Two types of motion have been studied in some detail. Motion in contact, where I remains in contact with E, is performed by moving along the faces of the boundary of FP. By partitioning FP into prisms, it is possible to compute motions when I never makes contact with E. In this case, the theoretical complexity does not exceed O(m/sup 6/n/sup 6/ alpha (mn)) but it is expected to be much smaller in practice. In both cases, pseudo-optimal motions can be obtained with a complexity increased by a factor log mn.&lt; &gt;</abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/ROBOT.1988.12304</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0818608528
ispartof Proceedings. 1988 IEEE International Conference on Robotics and Automation, 1988, p.1656-1661 vol.3
issn
language eng
recordid cdi_ieee_primary_12304
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Joining processes
title A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20practical%20exact%20motion%20planning%20algorithm%20for%20polygonal%20objects%20amidst%20polygonal%20obstacles&rft.btitle=Proceedings.%201988%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Avnaim,%20F.&rft.date=1988&rft.spage=1656&rft.epage=1661%20vol.3&rft.pages=1656-1661%20vol.3&rft.isbn=0818608528&rft.isbn_list=9780818608520&rft_id=info:doi/10.1109/ROBOT.1988.12304&rft_dat=%3Cieee_6IE%3E12304%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=12304&rfr_iscdi=true