Automatic tire pressure fault monitor using wavelet-based probability density estimation

This paper is devoted to the problem of tire pressure monitoring and tire fault detection. Based on wavelet package transformation, the density of the tire's response vibration caused by the stochastic ground excitation is analyzed. Then using RBF neural networks to learn and classify the diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li Li, Fei-Yue Wang, Qunzhi Zhou, Guoling Shan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue
container_start_page 80
container_title
container_volume
creator Li Li
Fei-Yue Wang
Qunzhi Zhou
Guoling Shan
description This paper is devoted to the problem of tire pressure monitoring and tire fault detection. Based on wavelet package transformation, the density of the tire's response vibration caused by the stochastic ground excitation is analyzed. Then using RBF neural networks to learn and classify the different types of vibration response, an automatic abnormal tire pressure detector is built. Theoretical analysis and simulation results show the I effectives of this new fault detector.
doi_str_mv 10.1109/IVS.2003.1212887
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1212887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1212887</ieee_id><sourcerecordid>1212887</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f012992aeac93c98b6c7497cb77dea2c10b5f1f7ced61ad64be12ee01c2debda3</originalsourceid><addsrcrecordid>eNotT0trwzAYM4zBRpf7YBf_gWT-bCe2j6XsUSjssLXsVvz4MjzSpMTORv_9UlYhkA5CQoTcA6sAmHlc794rzpiogAPXWl2RwijNZgqlpRY3pEjpm82QtWykuiWfyykPB5ujpzmOSI8jpjTNprVTl-lh6GMeRjql2H_RX_uDHebS2YRhjg7OutjFfKIB-3RWTDme24b-jly3tktYXHRBts9PH6vXcvP2sl4tN2UEVeeyZcCN4RatN8Ib7RqvpFHeKRXQcg_M1S20ymNowIZGOgSOyMDzgC5YsSAP_70REffHcZ4fT_vLf_EH-7FTzg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic tire pressure fault monitor using wavelet-based probability density estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li Li ; Fei-Yue Wang ; Qunzhi Zhou ; Guoling Shan</creator><creatorcontrib>Li Li ; Fei-Yue Wang ; Qunzhi Zhou ; Guoling Shan</creatorcontrib><description>This paper is devoted to the problem of tire pressure monitoring and tire fault detection. Based on wavelet package transformation, the density of the tire's response vibration caused by the stochastic ground excitation is analyzed. Then using RBF neural networks to learn and classify the different types of vibration response, an automatic abnormal tire pressure detector is built. Theoretical analysis and simulation results show the I effectives of this new fault detector.</description><identifier>ISBN: 9780780378483</identifier><identifier>ISBN: 0780378482</identifier><identifier>DOI: 10.1109/IVS.2003.1212887</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Computerized monitoring ; Fault detection ; Friction ; Intelligent systems ; Laboratories ; Neural networks ; Stochastic processes ; Tires ; Wavelet analysis</subject><ispartof>IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683), 2003, p.80-84</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1212887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1212887$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li Li</creatorcontrib><creatorcontrib>Fei-Yue Wang</creatorcontrib><creatorcontrib>Qunzhi Zhou</creatorcontrib><creatorcontrib>Guoling Shan</creatorcontrib><title>Automatic tire pressure fault monitor using wavelet-based probability density estimation</title><title>IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683)</title><addtitle>IVS</addtitle><description>This paper is devoted to the problem of tire pressure monitoring and tire fault detection. Based on wavelet package transformation, the density of the tire's response vibration caused by the stochastic ground excitation is analyzed. Then using RBF neural networks to learn and classify the different types of vibration response, an automatic abnormal tire pressure detector is built. Theoretical analysis and simulation results show the I effectives of this new fault detector.</description><subject>Automation</subject><subject>Computerized monitoring</subject><subject>Fault detection</subject><subject>Friction</subject><subject>Intelligent systems</subject><subject>Laboratories</subject><subject>Neural networks</subject><subject>Stochastic processes</subject><subject>Tires</subject><subject>Wavelet analysis</subject><isbn>9780780378483</isbn><isbn>0780378482</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT0trwzAYM4zBRpf7YBf_gWT-bCe2j6XsUSjssLXsVvz4MjzSpMTORv_9UlYhkA5CQoTcA6sAmHlc794rzpiogAPXWl2RwijNZgqlpRY3pEjpm82QtWykuiWfyykPB5ujpzmOSI8jpjTNprVTl-lh6GMeRjql2H_RX_uDHebS2YRhjg7OutjFfKIB-3RWTDme24b-jly3tktYXHRBts9PH6vXcvP2sl4tN2UEVeeyZcCN4RatN8Ib7RqvpFHeKRXQcg_M1S20ymNowIZGOgSOyMDzgC5YsSAP_70REffHcZ4fT_vLf_EH-7FTzg</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Li Li</creator><creator>Fei-Yue Wang</creator><creator>Qunzhi Zhou</creator><creator>Guoling Shan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Automatic tire pressure fault monitor using wavelet-based probability density estimation</title><author>Li Li ; Fei-Yue Wang ; Qunzhi Zhou ; Guoling Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f012992aeac93c98b6c7497cb77dea2c10b5f1f7ced61ad64be12ee01c2debda3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Automation</topic><topic>Computerized monitoring</topic><topic>Fault detection</topic><topic>Friction</topic><topic>Intelligent systems</topic><topic>Laboratories</topic><topic>Neural networks</topic><topic>Stochastic processes</topic><topic>Tires</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Li</creatorcontrib><creatorcontrib>Fei-Yue Wang</creatorcontrib><creatorcontrib>Qunzhi Zhou</creatorcontrib><creatorcontrib>Guoling Shan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Li</au><au>Fei-Yue Wang</au><au>Qunzhi Zhou</au><au>Guoling Shan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic tire pressure fault monitor using wavelet-based probability density estimation</atitle><btitle>IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683)</btitle><stitle>IVS</stitle><date>2003</date><risdate>2003</risdate><spage>80</spage><epage>84</epage><pages>80-84</pages><isbn>9780780378483</isbn><isbn>0780378482</isbn><abstract>This paper is devoted to the problem of tire pressure monitoring and tire fault detection. Based on wavelet package transformation, the density of the tire's response vibration caused by the stochastic ground excitation is analyzed. Then using RBF neural networks to learn and classify the different types of vibration response, an automatic abnormal tire pressure detector is built. Theoretical analysis and simulation results show the I effectives of this new fault detector.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2003.1212887</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780378483
ispartof IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683), 2003, p.80-84
issn
language eng
recordid cdi_ieee_primary_1212887
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automation
Computerized monitoring
Fault detection
Friction
Intelligent systems
Laboratories
Neural networks
Stochastic processes
Tires
Wavelet analysis
title Automatic tire pressure fault monitor using wavelet-based probability density estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20tire%20pressure%20fault%20monitor%20using%20wavelet-based%20probability%20density%20estimation&rft.btitle=IEEE%20IV2003%20Intelligent%20Vehicles%20Symposium.%20Proceedings%20(Cat.%20No.03TH8683)&rft.au=Li%20Li&rft.date=2003&rft.spage=80&rft.epage=84&rft.pages=80-84&rft.isbn=9780780378483&rft.isbn_list=0780378482&rft_id=info:doi/10.1109/IVS.2003.1212887&rft_dat=%3Cieee_6IE%3E1212887%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1212887&rfr_iscdi=true