Discriminative training of tied mixture density HMMs for online handwritten digit recognition

This paper describes and evaluates the maximum mutual information criterion (MMI) for online unconstrained-style handwritten digit recognition based on hidden Markov models (HMMs). The study focuses on determining the best MMI optimization scheme and the HMM parameters that exhibit the most discrimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nopsuwanchai, R., Biem, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 817
container_issue
container_start_page II
container_title
container_volume 2
creator Nopsuwanchai, R.
Biem, A.
description This paper describes and evaluates the maximum mutual information criterion (MMI) for online unconstrained-style handwritten digit recognition based on hidden Markov models (HMMs). The study focuses on determining the best MMI optimization scheme and the HMM parameters that exhibit the most discriminative capabilities in the context of tied mixture density hidden Markov models (TDHMMs), where all HMM states share a pool of Gaussians. The experimental results show that the second-order optimization scheme is the most efficient and that although means and covariance matrix are shared by all models, they contribute the most to discrimination.
doi_str_mv 10.1109/ICASSP.2003.1202492
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1202492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1202492</ieee_id><sourcerecordid>1202492</sourcerecordid><originalsourceid>FETCH-ieee_primary_12024923</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0eEgH6Bd3MDySM7ZDES1RAZVEJqV10gyqrmYRB7RjZ5tG_p4uuka50FmdxdJWaaqy0Rnf3MntYLl8rg2grbdDUzpypwtjWldrh-lxNXNvhcbZtGmsuVKHvDZaNrt2Vuk7pAxG7tu4K9fbIaRt5z-IzfxPk6FlYRggDZKYe9vybvyJBT5I4H2C-WCQYQoQgOxaCdy_9T-ScSaDnkTNE2oZROHOQW3U5-F2iyYk3avr8tJrNSyaizeex6-Nhc3pg_7d_Mi5Ixw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Discriminative training of tied mixture density HMMs for online handwritten digit recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nopsuwanchai, R. ; Biem, A.</creator><creatorcontrib>Nopsuwanchai, R. ; Biem, A.</creatorcontrib><description>This paper describes and evaluates the maximum mutual information criterion (MMI) for online unconstrained-style handwritten digit recognition based on hidden Markov models (HMMs). The study focuses on determining the best MMI optimization scheme and the HMM parameters that exhibit the most discriminative capabilities in the context of tied mixture density hidden Markov models (TDHMMs), where all HMM states share a pool of Gaussians. The experimental results show that the second-order optimization scheme is the most efficient and that although means and covariance matrix are shared by all models, they contribute the most to discrimination.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780376632</identifier><identifier>ISBN: 0780376633</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2003.1202492</identifier><language>eng</language><publisher>IEEE</publisher><subject>Covariance matrix ; Handheld computers ; Handwriting recognition ; Hardware ; Hidden Markov models ; Laboratories ; Maximum likelihood estimation ; Mutual information ; Personal digital assistants ; Power system modeling</subject><ispartof>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03), 2003, Vol.2, p.II-817</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1202492$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1202492$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nopsuwanchai, R.</creatorcontrib><creatorcontrib>Biem, A.</creatorcontrib><title>Discriminative training of tied mixture density HMMs for online handwritten digit recognition</title><title>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)</title><addtitle>ICASSP</addtitle><description>This paper describes and evaluates the maximum mutual information criterion (MMI) for online unconstrained-style handwritten digit recognition based on hidden Markov models (HMMs). The study focuses on determining the best MMI optimization scheme and the HMM parameters that exhibit the most discriminative capabilities in the context of tied mixture density hidden Markov models (TDHMMs), where all HMM states share a pool of Gaussians. The experimental results show that the second-order optimization scheme is the most efficient and that although means and covariance matrix are shared by all models, they contribute the most to discrimination.</description><subject>Covariance matrix</subject><subject>Handheld computers</subject><subject>Handwriting recognition</subject><subject>Hardware</subject><subject>Hidden Markov models</subject><subject>Laboratories</subject><subject>Maximum likelihood estimation</subject><subject>Mutual information</subject><subject>Personal digital assistants</subject><subject>Power system modeling</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780376632</isbn><isbn>0780376633</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9j8tOwzAQRS0eEgH6Bd3MDySM7ZDES1RAZVEJqV10gyqrmYRB7RjZ5tG_p4uuka50FmdxdJWaaqy0Rnf3MntYLl8rg2grbdDUzpypwtjWldrh-lxNXNvhcbZtGmsuVKHvDZaNrt2Vuk7pAxG7tu4K9fbIaRt5z-IzfxPk6FlYRggDZKYe9vybvyJBT5I4H2C-WCQYQoQgOxaCdy_9T-ScSaDnkTNE2oZROHOQW3U5-F2iyYk3avr8tJrNSyaizeex6-Nhc3pg_7d_Mi5Ixw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Nopsuwanchai, R.</creator><creator>Biem, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2003</creationdate><title>Discriminative training of tied mixture density HMMs for online handwritten digit recognition</title><author>Nopsuwanchai, R. ; Biem, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_12024923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Covariance matrix</topic><topic>Handheld computers</topic><topic>Handwriting recognition</topic><topic>Hardware</topic><topic>Hidden Markov models</topic><topic>Laboratories</topic><topic>Maximum likelihood estimation</topic><topic>Mutual information</topic><topic>Personal digital assistants</topic><topic>Power system modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Nopsuwanchai, R.</creatorcontrib><creatorcontrib>Biem, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nopsuwanchai, R.</au><au>Biem, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discriminative training of tied mixture density HMMs for online handwritten digit recognition</atitle><btitle>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)</btitle><stitle>ICASSP</stitle><date>2003</date><risdate>2003</risdate><volume>2</volume><spage>II</spage><epage>817</epage><pages>II-817</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780376632</isbn><isbn>0780376633</isbn><abstract>This paper describes and evaluates the maximum mutual information criterion (MMI) for online unconstrained-style handwritten digit recognition based on hidden Markov models (HMMs). The study focuses on determining the best MMI optimization scheme and the HMM parameters that exhibit the most discriminative capabilities in the context of tied mixture density hidden Markov models (TDHMMs), where all HMM states share a pool of Gaussians. The experimental results show that the second-order optimization scheme is the most efficient and that although means and covariance matrix are shared by all models, they contribute the most to discrimination.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2003.1202492</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03), 2003, Vol.2, p.II-817
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_1202492
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Covariance matrix
Handheld computers
Handwriting recognition
Hardware
Hidden Markov models
Laboratories
Maximum likelihood estimation
Mutual information
Personal digital assistants
Power system modeling
title Discriminative training of tied mixture density HMMs for online handwritten digit recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discriminative%20training%20of%20tied%20mixture%20density%20HMMs%20for%20online%20handwritten%20digit%20recognition&rft.btitle=2003%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing,%202003.%20Proceedings.%20(ICASSP%20'03)&rft.au=Nopsuwanchai,%20R.&rft.date=2003&rft.volume=2&rft.spage=II&rft.epage=817&rft.pages=II-817&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780376632&rft.isbn_list=0780376633&rft_id=info:doi/10.1109/ICASSP.2003.1202492&rft_dat=%3Cieee_6IE%3E1202492%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1202492&rfr_iscdi=true