Real-time face verification using multiple feature combination and a support vector machine supervisor

The paper proposes a novel face verification algorithm based on multiple feature combination and a support vector machine. The main issue in face verification is to deal with the variability in appearance. It seems difficult to solve this issue by using a single feature. Therefore, combination of mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Do-Hyung Kim, Jae-Yeon Lee, Jung Soh, Yun-Koo Chung
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue
container_start_page II
container_title
container_volume 2
creator Do-Hyung Kim
Jae-Yeon Lee
Jung Soh
Yun-Koo Chung
description The paper proposes a novel face verification algorithm based on multiple feature combination and a support vector machine. The main issue in face verification is to deal with the variability in appearance. It seems difficult to solve this issue by using a single feature. Therefore, combination of mutually complementary features is necessary to cope with various changes in appearance. From this point of view, we describe feature extraction approaches based on multiple principal component analysis and edge distribution. These features are projected on a new intra-person/extra-person similarity space that consists of several simple similarity measures, and are finally evaluated by a support vector machine supervisor. From the experiments on a realistic and large database, an equal error rate of 0.029 is achieved, which is a sufficiently practical level for many real-world applications.
doi_str_mv 10.1109/ICASSP.2003.1202368
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1202368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1202368</ieee_id><sourcerecordid>1202368</sourcerecordid><originalsourceid>FETCH-ieee_primary_12023683</originalsourceid><addsrcrecordid>eNp9j81OwzAQhC1-JAL0CXrxCySs7TaJj6gC0RuiPfRWue6GLortyHYq8fYE0TPSSCPNfHMYxuYCKiFAP61Xz5vNeyUBVCUkSFW3V6yQqtGl0LC7ZjPdtDBJNXWt5A0rxFJCWYuFvmP3KX0BQNss2oJ1H2j6MpND3hmL_IyROrImU_B8TOQ_uRv7TEM_AWjyGJHb4A7k_xDjj9zwNA5DiHla2xwid8aeyONvjPFMKcRHdtuZPuHs4g9s_vqyXb2VhIj7IZIz8Xt_uaL-b38AEn5MWQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real-time face verification using multiple feature combination and a support vector machine supervisor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Do-Hyung Kim ; Jae-Yeon Lee ; Jung Soh ; Yun-Koo Chung</creator><creatorcontrib>Do-Hyung Kim ; Jae-Yeon Lee ; Jung Soh ; Yun-Koo Chung</creatorcontrib><description>The paper proposes a novel face verification algorithm based on multiple feature combination and a support vector machine. The main issue in face verification is to deal with the variability in appearance. It seems difficult to solve this issue by using a single feature. Therefore, combination of mutually complementary features is necessary to cope with various changes in appearance. From this point of view, we describe feature extraction approaches based on multiple principal component analysis and edge distribution. These features are projected on a new intra-person/extra-person similarity space that consists of several simple similarity measures, and are finally evaluated by a support vector machine supervisor. From the experiments on a realistic and large database, an equal error rate of 0.029 is achieved, which is a sufficiently practical level for many real-world applications.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780376632</identifier><identifier>ISBN: 0780376633</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2003.1202368</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biometrics ; Face detection ; Feature extraction ; Image databases ; Information processing ; Photometry ; Principal component analysis ; Software ; Spatial databases ; Support vector machines</subject><ispartof>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03), 2003, Vol.2, p.II-353</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1202368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1202368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Do-Hyung Kim</creatorcontrib><creatorcontrib>Jae-Yeon Lee</creatorcontrib><creatorcontrib>Jung Soh</creatorcontrib><creatorcontrib>Yun-Koo Chung</creatorcontrib><title>Real-time face verification using multiple feature combination and a support vector machine supervisor</title><title>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)</title><addtitle>ICASSP</addtitle><description>The paper proposes a novel face verification algorithm based on multiple feature combination and a support vector machine. The main issue in face verification is to deal with the variability in appearance. It seems difficult to solve this issue by using a single feature. Therefore, combination of mutually complementary features is necessary to cope with various changes in appearance. From this point of view, we describe feature extraction approaches based on multiple principal component analysis and edge distribution. These features are projected on a new intra-person/extra-person similarity space that consists of several simple similarity measures, and are finally evaluated by a support vector machine supervisor. From the experiments on a realistic and large database, an equal error rate of 0.029 is achieved, which is a sufficiently practical level for many real-world applications.</description><subject>Biometrics</subject><subject>Face detection</subject><subject>Feature extraction</subject><subject>Image databases</subject><subject>Information processing</subject><subject>Photometry</subject><subject>Principal component analysis</subject><subject>Software</subject><subject>Spatial databases</subject><subject>Support vector machines</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780376632</isbn><isbn>0780376633</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9j81OwzAQhC1-JAL0CXrxCySs7TaJj6gC0RuiPfRWue6GLortyHYq8fYE0TPSSCPNfHMYxuYCKiFAP61Xz5vNeyUBVCUkSFW3V6yQqtGl0LC7ZjPdtDBJNXWt5A0rxFJCWYuFvmP3KX0BQNss2oJ1H2j6MpND3hmL_IyROrImU_B8TOQ_uRv7TEM_AWjyGJHb4A7k_xDjj9zwNA5DiHla2xwid8aeyONvjPFMKcRHdtuZPuHs4g9s_vqyXb2VhIj7IZIz8Xt_uaL-b38AEn5MWQ</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Do-Hyung Kim</creator><creator>Jae-Yeon Lee</creator><creator>Jung Soh</creator><creator>Yun-Koo Chung</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2003</creationdate><title>Real-time face verification using multiple feature combination and a support vector machine supervisor</title><author>Do-Hyung Kim ; Jae-Yeon Lee ; Jung Soh ; Yun-Koo Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_12023683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biometrics</topic><topic>Face detection</topic><topic>Feature extraction</topic><topic>Image databases</topic><topic>Information processing</topic><topic>Photometry</topic><topic>Principal component analysis</topic><topic>Software</topic><topic>Spatial databases</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Do-Hyung Kim</creatorcontrib><creatorcontrib>Jae-Yeon Lee</creatorcontrib><creatorcontrib>Jung Soh</creatorcontrib><creatorcontrib>Yun-Koo Chung</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Do-Hyung Kim</au><au>Jae-Yeon Lee</au><au>Jung Soh</au><au>Yun-Koo Chung</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real-time face verification using multiple feature combination and a support vector machine supervisor</atitle><btitle>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)</btitle><stitle>ICASSP</stitle><date>2003</date><risdate>2003</risdate><volume>2</volume><spage>II</spage><epage>353</epage><pages>II-353</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780376632</isbn><isbn>0780376633</isbn><abstract>The paper proposes a novel face verification algorithm based on multiple feature combination and a support vector machine. The main issue in face verification is to deal with the variability in appearance. It seems difficult to solve this issue by using a single feature. Therefore, combination of mutually complementary features is necessary to cope with various changes in appearance. From this point of view, we describe feature extraction approaches based on multiple principal component analysis and edge distribution. These features are projected on a new intra-person/extra-person similarity space that consists of several simple similarity measures, and are finally evaluated by a support vector machine supervisor. From the experiments on a realistic and large database, an equal error rate of 0.029 is achieved, which is a sufficiently practical level for many real-world applications.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2003.1202368</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03), 2003, Vol.2, p.II-353
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_1202368
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biometrics
Face detection
Feature extraction
Image databases
Information processing
Photometry
Principal component analysis
Software
Spatial databases
Support vector machines
title Real-time face verification using multiple feature combination and a support vector machine supervisor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real-time%20face%20verification%20using%20multiple%20feature%20combination%20and%20a%20support%20vector%20machine%20supervisor&rft.btitle=2003%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing,%202003.%20Proceedings.%20(ICASSP%20'03)&rft.au=Do-Hyung%20Kim&rft.date=2003&rft.volume=2&rft.spage=II&rft.epage=353&rft.pages=II-353&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780376632&rft.isbn_list=0780376633&rft_id=info:doi/10.1109/ICASSP.2003.1202368&rft_dat=%3Cieee_6IE%3E1202368%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1202368&rfr_iscdi=true