High performance speaker and vocabulary independent ASR technology for mobile phones

This paper presents the Siemens speech recognizer for mobile phones, VSR. VSR employs HMM technology and uses general-purpose phoneme-based acoustic models which make it speaker and vocabulary independent. The system can be easily reconfigured to work with arbitrary vocabularies. This provides full...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Astrov, S., Bauer, J.G., Stan, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue
container_start_page II
container_title
container_volume 2
creator Astrov, S.
Bauer, J.G.
Stan, S.
description This paper presents the Siemens speech recognizer for mobile phones, VSR. VSR employs HMM technology and uses general-purpose phoneme-based acoustic models which make it speaker and vocabulary independent. The system can be easily reconfigured to work with arbitrary vocabularies. This provides full flexibility for the design of the user interface which contrasts with the capabilities of other low-resource recognizers. The system requirements of VSR are very low. The emission probability calculation and the Viterbi search with a vocabulary of 30 words need only 16 MHz for real-time operation on an ARM microcontroller. The HMM acoustic models take up about 12 kilobytes of permanent storage. The most significant algorithmic improvement is the newly developed 3-D stream-based coding of the HMMs. Despite low requirements in terms of system resources VSR achieves an outstanding recognition performance. The word error rate (WER) for a recognition task with 62 German isolated words including highly confusable digits is 7.0%.
doi_str_mv 10.1109/ICASSP.2003.1202349
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1202349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1202349</ieee_id><sourcerecordid>1202349</sourcerecordid><originalsourceid>FETCH-ieee_primary_12023493</originalsourceid><addsrcrecordid>eNp9jsFOwzAQRFdQJELpF_SyP5CwtkMSH6sKVG6I9MCtctNtY0hsyy5I_Xty6BlpNHN4mtEALAUVQpB-eluv2va9kESqEJKkKvUNZFLVOheaPm9hoeuGJqm6qpScQSaeJeWVKPU9PKT0RURNXTYZbDf21GPgePRxNK5jTIHNN0c07oC_vjP7n8HEC1p34MCTuTOu2g88c9c7P_jTBacqjn5vB8bQe8fpEe6OZki8uOYclq8v2_Umt8y8C9GO0-Luelz9T_8APJxE6g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High performance speaker and vocabulary independent ASR technology for mobile phones</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Astrov, S. ; Bauer, J.G. ; Stan, S.</creator><creatorcontrib>Astrov, S. ; Bauer, J.G. ; Stan, S.</creatorcontrib><description>This paper presents the Siemens speech recognizer for mobile phones, VSR. VSR employs HMM technology and uses general-purpose phoneme-based acoustic models which make it speaker and vocabulary independent. The system can be easily reconfigured to work with arbitrary vocabularies. This provides full flexibility for the design of the user interface which contrasts with the capabilities of other low-resource recognizers. The system requirements of VSR are very low. The emission probability calculation and the Viterbi search with a vocabulary of 30 words need only 16 MHz for real-time operation on an ARM microcontroller. The HMM acoustic models take up about 12 kilobytes of permanent storage. The most significant algorithmic improvement is the newly developed 3-D stream-based coding of the HMMs. Despite low requirements in terms of system resources VSR achieves an outstanding recognition performance. The word error rate (WER) for a recognition task with 62 German isolated words including highly confusable digits is 7.0%.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780376632</identifier><identifier>ISBN: 0780376633</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2003.1202349</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic emission ; Automatic speech recognition ; Hidden Markov models ; Loudspeakers ; Mobile handsets ; Probability ; Speech recognition ; User interfaces ; Viterbi algorithm ; Vocabulary</subject><ispartof>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03), 2003, Vol.2, p.II-281</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1202349$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1202349$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Astrov, S.</creatorcontrib><creatorcontrib>Bauer, J.G.</creatorcontrib><creatorcontrib>Stan, S.</creatorcontrib><title>High performance speaker and vocabulary independent ASR technology for mobile phones</title><title>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)</title><addtitle>ICASSP</addtitle><description>This paper presents the Siemens speech recognizer for mobile phones, VSR. VSR employs HMM technology and uses general-purpose phoneme-based acoustic models which make it speaker and vocabulary independent. The system can be easily reconfigured to work with arbitrary vocabularies. This provides full flexibility for the design of the user interface which contrasts with the capabilities of other low-resource recognizers. The system requirements of VSR are very low. The emission probability calculation and the Viterbi search with a vocabulary of 30 words need only 16 MHz for real-time operation on an ARM microcontroller. The HMM acoustic models take up about 12 kilobytes of permanent storage. The most significant algorithmic improvement is the newly developed 3-D stream-based coding of the HMMs. Despite low requirements in terms of system resources VSR achieves an outstanding recognition performance. The word error rate (WER) for a recognition task with 62 German isolated words including highly confusable digits is 7.0%.</description><subject>Acoustic emission</subject><subject>Automatic speech recognition</subject><subject>Hidden Markov models</subject><subject>Loudspeakers</subject><subject>Mobile handsets</subject><subject>Probability</subject><subject>Speech recognition</subject><subject>User interfaces</subject><subject>Viterbi algorithm</subject><subject>Vocabulary</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780376632</isbn><isbn>0780376633</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jsFOwzAQRFdQJELpF_SyP5CwtkMSH6sKVG6I9MCtctNtY0hsyy5I_Xty6BlpNHN4mtEALAUVQpB-eluv2va9kESqEJKkKvUNZFLVOheaPm9hoeuGJqm6qpScQSaeJeWVKPU9PKT0RURNXTYZbDf21GPgePRxNK5jTIHNN0c07oC_vjP7n8HEC1p34MCTuTOu2g88c9c7P_jTBacqjn5vB8bQe8fpEe6OZki8uOYclq8v2_Umt8y8C9GO0-Luelz9T_8APJxE6g</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Astrov, S.</creator><creator>Bauer, J.G.</creator><creator>Stan, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2003</creationdate><title>High performance speaker and vocabulary independent ASR technology for mobile phones</title><author>Astrov, S. ; Bauer, J.G. ; Stan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_12023493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acoustic emission</topic><topic>Automatic speech recognition</topic><topic>Hidden Markov models</topic><topic>Loudspeakers</topic><topic>Mobile handsets</topic><topic>Probability</topic><topic>Speech recognition</topic><topic>User interfaces</topic><topic>Viterbi algorithm</topic><topic>Vocabulary</topic><toplevel>online_resources</toplevel><creatorcontrib>Astrov, S.</creatorcontrib><creatorcontrib>Bauer, J.G.</creatorcontrib><creatorcontrib>Stan, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Astrov, S.</au><au>Bauer, J.G.</au><au>Stan, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High performance speaker and vocabulary independent ASR technology for mobile phones</atitle><btitle>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)</btitle><stitle>ICASSP</stitle><date>2003</date><risdate>2003</risdate><volume>2</volume><spage>II</spage><epage>281</epage><pages>II-281</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780376632</isbn><isbn>0780376633</isbn><abstract>This paper presents the Siemens speech recognizer for mobile phones, VSR. VSR employs HMM technology and uses general-purpose phoneme-based acoustic models which make it speaker and vocabulary independent. The system can be easily reconfigured to work with arbitrary vocabularies. This provides full flexibility for the design of the user interface which contrasts with the capabilities of other low-resource recognizers. The system requirements of VSR are very low. The emission probability calculation and the Viterbi search with a vocabulary of 30 words need only 16 MHz for real-time operation on an ARM microcontroller. The HMM acoustic models take up about 12 kilobytes of permanent storage. The most significant algorithmic improvement is the newly developed 3-D stream-based coding of the HMMs. Despite low requirements in terms of system resources VSR achieves an outstanding recognition performance. The word error rate (WER) for a recognition task with 62 German isolated words including highly confusable digits is 7.0%.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2003.1202349</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03), 2003, Vol.2, p.II-281
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_1202349
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic emission
Automatic speech recognition
Hidden Markov models
Loudspeakers
Mobile handsets
Probability
Speech recognition
User interfaces
Viterbi algorithm
Vocabulary
title High performance speaker and vocabulary independent ASR technology for mobile phones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High%20performance%20speaker%20and%20vocabulary%20independent%20ASR%20technology%20for%20mobile%20phones&rft.btitle=2003%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing,%202003.%20Proceedings.%20(ICASSP%20'03)&rft.au=Astrov,%20S.&rft.date=2003&rft.volume=2&rft.spage=II&rft.epage=281&rft.pages=II-281&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780376632&rft.isbn_list=0780376633&rft_id=info:doi/10.1109/ICASSP.2003.1202349&rft_dat=%3Cieee_6IE%3E1202349%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1202349&rfr_iscdi=true