Partitioned vector quantization: application to lossless compression of hyperspectral images

A novel design for a vector quantizer that uses multiple codebooks of variable dimensionality is proposed. High dimensional source vectors are first partitioned into two or more subvectors of (possibly) different length and then, each subvector is individually encoded with an appropriate codebook. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Motta, G., Rizzo, F., Storer, J.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue
container_start_page III
container_title
container_volume 3
creator Motta, G.
Rizzo, F.
Storer, J.A.
description A novel design for a vector quantizer that uses multiple codebooks of variable dimensionality is proposed. High dimensional source vectors are first partitioned into two or more subvectors of (possibly) different length and then, each subvector is individually encoded with an appropriate codebook. Further redundancy is exploited by conditional entropy coding of the subvectors indices. This scheme allows practical quantization of high dimensional vectors in which each vector component is allowed to have different alphabet and distribution. This is typically the case of the pixels representing a hyperspectral image. We present experimental results in the lossless and near-lossless encoding of such images. The method can be easily adapted to lossy coding.
doi_str_mv 10.1109/ICASSP.2003.1199152
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1199152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1199152</ieee_id><sourcerecordid>1199152</sourcerecordid><originalsourceid>FETCH-ieee_primary_11991523</originalsourceid><addsrcrecordid>eNp9j0FrAjEQhQdbwa31F3jJH1g72djdjTeRlvYm2EMPgoTt2EaiiZlYsL--sXguDMx73zweDMBY4kRK1A-vi_lqtZxUiCoDreVj1YOiUo0upcb3GxjppsU8qqlrVd1CkRNY1nKqB3DHvEPEtpm2BayXJiabrD_Qh_imLvkojidzSPbHXOhMmBCc7f6MSF44z-yIWXR-H2IWF-634uscKHLIDdE4Yffmk_ge-lvjmEbXPYTx89Pb4qW0RLQJMafieXN9QP1__QVj70ls</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Partitioned vector quantization: application to lossless compression of hyperspectral images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Motta, G. ; Rizzo, F. ; Storer, J.A.</creator><creatorcontrib>Motta, G. ; Rizzo, F. ; Storer, J.A.</creatorcontrib><description>A novel design for a vector quantizer that uses multiple codebooks of variable dimensionality is proposed. High dimensional source vectors are first partitioned into two or more subvectors of (possibly) different length and then, each subvector is individually encoded with an appropriate codebook. Further redundancy is exploited by conditional entropy coding of the subvectors indices. This scheme allows practical quantization of high dimensional vectors in which each vector component is allowed to have different alphabet and distribution. This is typically the case of the pixels representing a hyperspectral image. We present experimental results in the lossless and near-lossless encoding of such images. The method can be easily adapted to lossy coding.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780376632</identifier><identifier>ISBN: 0780376633</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2003.1199152</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer science ; Distortion measurement ; Entropy ; Hyperspectral imaging ; Image coding ; Pixel ; Principal component analysis ; Spatial resolution ; Vector quantization</subject><ispartof>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03), 2003, Vol.3, p.III-241</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1199152$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1199152$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Motta, G.</creatorcontrib><creatorcontrib>Rizzo, F.</creatorcontrib><creatorcontrib>Storer, J.A.</creatorcontrib><title>Partitioned vector quantization: application to lossless compression of hyperspectral images</title><title>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)</title><addtitle>ICASSP</addtitle><description>A novel design for a vector quantizer that uses multiple codebooks of variable dimensionality is proposed. High dimensional source vectors are first partitioned into two or more subvectors of (possibly) different length and then, each subvector is individually encoded with an appropriate codebook. Further redundancy is exploited by conditional entropy coding of the subvectors indices. This scheme allows practical quantization of high dimensional vectors in which each vector component is allowed to have different alphabet and distribution. This is typically the case of the pixels representing a hyperspectral image. We present experimental results in the lossless and near-lossless encoding of such images. The method can be easily adapted to lossy coding.</description><subject>Application software</subject><subject>Computer science</subject><subject>Distortion measurement</subject><subject>Entropy</subject><subject>Hyperspectral imaging</subject><subject>Image coding</subject><subject>Pixel</subject><subject>Principal component analysis</subject><subject>Spatial resolution</subject><subject>Vector quantization</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780376632</isbn><isbn>0780376633</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9j0FrAjEQhQdbwa31F3jJH1g72djdjTeRlvYm2EMPgoTt2EaiiZlYsL--sXguDMx73zweDMBY4kRK1A-vi_lqtZxUiCoDreVj1YOiUo0upcb3GxjppsU8qqlrVd1CkRNY1nKqB3DHvEPEtpm2BayXJiabrD_Qh_imLvkojidzSPbHXOhMmBCc7f6MSF44z-yIWXR-H2IWF-634uscKHLIDdE4Yffmk_ge-lvjmEbXPYTx89Pb4qW0RLQJMafieXN9QP1__QVj70ls</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Motta, G.</creator><creator>Rizzo, F.</creator><creator>Storer, J.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2003</creationdate><title>Partitioned vector quantization: application to lossless compression of hyperspectral images</title><author>Motta, G. ; Rizzo, F. ; Storer, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_11991523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Application software</topic><topic>Computer science</topic><topic>Distortion measurement</topic><topic>Entropy</topic><topic>Hyperspectral imaging</topic><topic>Image coding</topic><topic>Pixel</topic><topic>Principal component analysis</topic><topic>Spatial resolution</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Motta, G.</creatorcontrib><creatorcontrib>Rizzo, F.</creatorcontrib><creatorcontrib>Storer, J.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Motta, G.</au><au>Rizzo, F.</au><au>Storer, J.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Partitioned vector quantization: application to lossless compression of hyperspectral images</atitle><btitle>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)</btitle><stitle>ICASSP</stitle><date>2003</date><risdate>2003</risdate><volume>3</volume><spage>III</spage><epage>241</epage><pages>III-241</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780376632</isbn><isbn>0780376633</isbn><abstract>A novel design for a vector quantizer that uses multiple codebooks of variable dimensionality is proposed. High dimensional source vectors are first partitioned into two or more subvectors of (possibly) different length and then, each subvector is individually encoded with an appropriate codebook. Further redundancy is exploited by conditional entropy coding of the subvectors indices. This scheme allows practical quantization of high dimensional vectors in which each vector component is allowed to have different alphabet and distribution. This is typically the case of the pixels representing a hyperspectral image. We present experimental results in the lossless and near-lossless encoding of such images. The method can be easily adapted to lossy coding.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2003.1199152</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03), 2003, Vol.3, p.III-241
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_1199152
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Computer science
Distortion measurement
Entropy
Hyperspectral imaging
Image coding
Pixel
Principal component analysis
Spatial resolution
Vector quantization
title Partitioned vector quantization: application to lossless compression of hyperspectral images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Partitioned%20vector%20quantization:%20application%20to%20lossless%20compression%20of%20hyperspectral%20images&rft.btitle=2003%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing,%202003.%20Proceedings.%20(ICASSP%20'03)&rft.au=Motta,%20G.&rft.date=2003&rft.volume=3&rft.spage=III&rft.epage=241&rft.pages=III-241&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780376632&rft.isbn_list=0780376633&rft_id=info:doi/10.1109/ICASSP.2003.1199152&rft_dat=%3Cieee_6IE%3E1199152%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1199152&rfr_iscdi=true