Speech recognition using reconstructed phase space features
The paper presents a novel method for speech recognition by utilizing nonlinear/chaotic signal processing techniques to extract time-domain based phase space features. By exploiting the theoretical results derived in nonlinear dynamics, a processing space called a reconstructed phase space can be ge...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | |
container_start_page | I |
container_title | |
container_volume | 1 |
creator | Lindgren, A.C. Johnson, M.T. Povinelli, R.J. |
description | The paper presents a novel method for speech recognition by utilizing nonlinear/chaotic signal processing techniques to extract time-domain based phase space features. By exploiting the theoretical results derived in nonlinear dynamics, a processing space called a reconstructed phase space can be generated where a salient model (the natural distribution of the attractor) can be extracted for speech recognition. To discover the discriminatory power of these features, isolated phoneme classification experiments were performed using the TIMIT corpus and compared to a baseline classifier that uses MFCC (Mel frequency cepstral coefficient) features. The results demonstrate that phase space features contain substantial discriminatory power, even though MFCC features outperformed the phase space features on direct comparisons. The authors conjecture that phase space and MFCC features used in combination within a classifier may yield increased accuracy for various speech recognition tasks. |
doi_str_mv | 10.1109/ICASSP.2003.1198716 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1198716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1198716</ieee_id><sourcerecordid>1198716</sourcerecordid><originalsourceid>FETCH-LOGICAL-i656-eca1e9e205f7e0d89f150d2666ec07f63e3c42d6208de32ca42baf871374895c3</originalsourceid><addsrcrecordid>eNotj81OwzAQhC0oEqH0CXrJC6SsvfE6FidU8SdVolJ64FYZZ90aQRrFyYG3J4LOZaTvMJpPiKWElZRg717XD3W9XSkAnICtjKQLkSk0tpAW3i_FDZgK0BAhzkQmtYKCZGmvxSKlT5hSaqm0zMR93TH7Y96zPx3aOMRTm48ptoc_0qahH_3ATd4dXeI8dc5zHtgNY8_pVlwF95V4ce652D097tYvxebteXq4KSJpKtg7yZYV6GAYmsoGqaFRRMQeTCBk9KVqSEHVMCrvSvXhwqSEpqys9jgXy__ZyMz7ro_frv_Zn7XxFwn7Smg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Speech recognition using reconstructed phase space features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lindgren, A.C. ; Johnson, M.T. ; Povinelli, R.J.</creator><creatorcontrib>Lindgren, A.C. ; Johnson, M.T. ; Povinelli, R.J.</creatorcontrib><description>The paper presents a novel method for speech recognition by utilizing nonlinear/chaotic signal processing techniques to extract time-domain based phase space features. By exploiting the theoretical results derived in nonlinear dynamics, a processing space called a reconstructed phase space can be generated where a salient model (the natural distribution of the attractor) can be extracted for speech recognition. To discover the discriminatory power of these features, isolated phoneme classification experiments were performed using the TIMIT corpus and compared to a baseline classifier that uses MFCC (Mel frequency cepstral coefficient) features. The results demonstrate that phase space features contain substantial discriminatory power, even though MFCC features outperformed the phase space features on direct comparisons. The authors conjecture that phase space and MFCC features used in combination within a classifier may yield increased accuracy for various speech recognition tasks.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 0780376633</identifier><identifier>ISBN: 9780780376632</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2003.1198716</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic signal processing ; Cepstral analysis ; Frequency domain analysis ; Linear systems ; Mel frequency cepstral coefficient ; Nonlinear dynamical systems ; Signal processing ; Speech processing ; Speech recognition ; Time domain analysis</subject><ispartof>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03), 2003, Vol.1, p.I-60</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1198716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1198716$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lindgren, A.C.</creatorcontrib><creatorcontrib>Johnson, M.T.</creatorcontrib><creatorcontrib>Povinelli, R.J.</creatorcontrib><title>Speech recognition using reconstructed phase space features</title><title>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)</title><addtitle>ICASSP</addtitle><description>The paper presents a novel method for speech recognition by utilizing nonlinear/chaotic signal processing techniques to extract time-domain based phase space features. By exploiting the theoretical results derived in nonlinear dynamics, a processing space called a reconstructed phase space can be generated where a salient model (the natural distribution of the attractor) can be extracted for speech recognition. To discover the discriminatory power of these features, isolated phoneme classification experiments were performed using the TIMIT corpus and compared to a baseline classifier that uses MFCC (Mel frequency cepstral coefficient) features. The results demonstrate that phase space features contain substantial discriminatory power, even though MFCC features outperformed the phase space features on direct comparisons. The authors conjecture that phase space and MFCC features used in combination within a classifier may yield increased accuracy for various speech recognition tasks.</description><subject>Acoustic signal processing</subject><subject>Cepstral analysis</subject><subject>Frequency domain analysis</subject><subject>Linear systems</subject><subject>Mel frequency cepstral coefficient</subject><subject>Nonlinear dynamical systems</subject><subject>Signal processing</subject><subject>Speech processing</subject><subject>Speech recognition</subject><subject>Time domain analysis</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>0780376633</isbn><isbn>9780780376632</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81OwzAQhC0oEqH0CXrJC6SsvfE6FidU8SdVolJ64FYZZ90aQRrFyYG3J4LOZaTvMJpPiKWElZRg717XD3W9XSkAnICtjKQLkSk0tpAW3i_FDZgK0BAhzkQmtYKCZGmvxSKlT5hSaqm0zMR93TH7Y96zPx3aOMRTm48ptoc_0qahH_3ATd4dXeI8dc5zHtgNY8_pVlwF95V4ce652D097tYvxebteXq4KSJpKtg7yZYV6GAYmsoGqaFRRMQeTCBk9KVqSEHVMCrvSvXhwqSEpqys9jgXy__ZyMz7ro_frv_Zn7XxFwn7Smg</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Lindgren, A.C.</creator><creator>Johnson, M.T.</creator><creator>Povinelli, R.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2003</creationdate><title>Speech recognition using reconstructed phase space features</title><author>Lindgren, A.C. ; Johnson, M.T. ; Povinelli, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i656-eca1e9e205f7e0d89f150d2666ec07f63e3c42d6208de32ca42baf871374895c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acoustic signal processing</topic><topic>Cepstral analysis</topic><topic>Frequency domain analysis</topic><topic>Linear systems</topic><topic>Mel frequency cepstral coefficient</topic><topic>Nonlinear dynamical systems</topic><topic>Signal processing</topic><topic>Speech processing</topic><topic>Speech recognition</topic><topic>Time domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Lindgren, A.C.</creatorcontrib><creatorcontrib>Johnson, M.T.</creatorcontrib><creatorcontrib>Povinelli, R.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lindgren, A.C.</au><au>Johnson, M.T.</au><au>Povinelli, R.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Speech recognition using reconstructed phase space features</atitle><btitle>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)</btitle><stitle>ICASSP</stitle><date>2003</date><risdate>2003</risdate><volume>1</volume><spage>I</spage><epage>60</epage><pages>I-60</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>0780376633</isbn><isbn>9780780376632</isbn><abstract>The paper presents a novel method for speech recognition by utilizing nonlinear/chaotic signal processing techniques to extract time-domain based phase space features. By exploiting the theoretical results derived in nonlinear dynamics, a processing space called a reconstructed phase space can be generated where a salient model (the natural distribution of the attractor) can be extracted for speech recognition. To discover the discriminatory power of these features, isolated phoneme classification experiments were performed using the TIMIT corpus and compared to a baseline classifier that uses MFCC (Mel frequency cepstral coefficient) features. The results demonstrate that phase space features contain substantial discriminatory power, even though MFCC features outperformed the phase space features on direct comparisons. The authors conjecture that phase space and MFCC features used in combination within a classifier may yield increased accuracy for various speech recognition tasks.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2003.1198716</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03), 2003, Vol.1, p.I-60 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_1198716 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustic signal processing Cepstral analysis Frequency domain analysis Linear systems Mel frequency cepstral coefficient Nonlinear dynamical systems Signal processing Speech processing Speech recognition Time domain analysis |
title | Speech recognition using reconstructed phase space features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A04%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Speech%20recognition%20using%20reconstructed%20phase%20space%20features&rft.btitle=2003%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing,%202003.%20Proceedings.%20(ICASSP%20'03)&rft.au=Lindgren,%20A.C.&rft.date=2003&rft.volume=1&rft.spage=I&rft.epage=60&rft.pages=I-60&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=0780376633&rft.isbn_list=9780780376632&rft_id=info:doi/10.1109/ICASSP.2003.1198716&rft_dat=%3Cieee_6IE%3E1198716%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1198716&rfr_iscdi=true |