Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets (for ITER)

A numerical analysis of normal zone propagation along the length of a cable-in-conduit type conductor for large scale magnets is described. The transient temperature propagation along the cable length, the helium pressure rise, and induced helium flow velocities in long cable cooling paths have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States) 1992-01, Vol.28 (1), p.267-270
Hauptverfasser: Volkov, A.F., Kalinin, V.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 1
container_start_page 267
container_title IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)
container_volume 28
creator Volkov, A.F.
Kalinin, V.V.
description A numerical analysis of normal zone propagation along the length of a cable-in-conduit type conductor for large scale magnets is described. The transient temperature propagation along the cable length, the helium pressure rise, and induced helium flow velocities in long cable cooling paths have been calculated on the basis of the computer code developed. As an example, Nb/sub 3/Sn conductors for the International Thermonuclear Experimental Reactor (ITER) have been considered. Results of this investigation show that during quench the velocity of the normal zone in the cable-in-conduit conductor can vary in a wide range from 1 m/s to 40 m/s. It is noted that these velocities depend greatly on the character of magnetic field variation along the conductor length. As a result, the maximum velocity of the normal zone in the ITER central solenoid is higher than that in the ITER toroidal field coil.< >
doi_str_mv 10.1109/20.119862
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_119862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>119862</ieee_id><sourcerecordid>10_1109_20_119862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-eeb72d7a7d0e095634504c0240b14a3dcada9bdbbb486af71074065929c5ba4b3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsHr56CJ3tYm2yyu81RSv2AgqD1vCTZSRvZJiXZVurJn26WFTw9zMzDwPsidE3JPaVETPOeYlbmJ2hEBacZIaU4RSNC6CwTvOTn6CLGzzTygpIR-lkYA7rD3mCJuyBdtOA6vIHW7rfYtP4LK9jIg_UBe4cP0Hptu2PvOx-2ssXf3gHeBb-Ta9nZ5FiHjQ8aGqy9bxPMPvb79-kcb-XaQRfxXTLwy2rxNrlEZ0a2Ea7-OEYfj4vV_Dlbvj69zB-Wmc4Z6zIAVeVNJauGABFFyXhBuCY5J4pyyRotGylUo5Tis1KaipKKk7IQudCFklyxMbod_vrY2TqmEKA32juX0tcFK1nFaJImg6SDjzGAqXfBbmU41pTUfb913rPvN7k3g2sB4N8bjr-Fb3XN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets (for ITER)</title><source>IEEE Electronic Library (IEL)</source><creator>Volkov, A.F. ; Kalinin, V.V.</creator><creatorcontrib>Volkov, A.F. ; Kalinin, V.V.</creatorcontrib><description>A numerical analysis of normal zone propagation along the length of a cable-in-conduit type conductor for large scale magnets is described. The transient temperature propagation along the cable length, the helium pressure rise, and induced helium flow velocities in long cable cooling paths have been calculated on the basis of the computer code developed. As an example, Nb/sub 3/Sn conductors for the International Thermonuclear Experimental Reactor (ITER) have been considered. Results of this investigation show that during quench the velocity of the normal zone in the cable-in-conduit conductor can vary in a wide range from 1 m/s to 40 m/s. It is noted that these velocities depend greatly on the character of magnetic field variation along the conductor length. As a result, the maximum velocity of the normal zone in the ITER central solenoid is higher than that in the ITER toroidal field coil.&lt; &gt;</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.119862</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>665420 -- Superfluidity-- (1992-) ; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; 700430 -- Fusion Technology-- Magnet Coils &amp; Fields-- (1992-) ; 700450 -- Fusion Technology-- Blankets &amp; Cooling Systems-- (1992-) ; ALLOYS ; CLOSED PLASMA DEVICES ; COMPUTER CODES ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Conductors ; CONVECTION ; COOLING ; DIVERTORS ; ELECTRIC COILS ; ELECTRICAL EQUIPMENT ; ELECTROMAGNETS ; ELEMENTS ; ENERGY TRANSFER ; FLOW MODELS ; FLUIDS ; FORCED CONVECTION ; GASES ; HEAT TRANSFER ; HELIUM ; Inductors ; ITER TOKAMAK ; Large-scale systems ; MAGNETIC FIELDS ; MAGNETS ; MASS TRANSFER ; MATHEMATICAL MODELS ; Niobium ; NIOBIUM ALLOYS ; NIOBIUM BASE ALLOYS ; NONMETALS ; Numerical analysis ; RARE GASES ; SOLENOIDS ; SUPERCONDUCTING COILS ; SUPERCONDUCTING DEVICES ; SUPERCONDUCTING MAGNETS ; Temperature ; THERMONUCLEAR DEVICES ; Tin ; TIN ALLOYS ; TOKAMAK DEVICES 665412 -- Superconducting Devices-- (1992-) ; TOROIDAL FIELD DIVERTORS ; TRANSIENTS</subject><ispartof>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States), 1992-01, Vol.28 (1), p.267-270</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-eeb72d7a7d0e095634504c0240b14a3dcada9bdbbb486af71074065929c5ba4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/119862$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,792,881,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/119862$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/5363731$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Volkov, A.F.</creatorcontrib><creatorcontrib>Kalinin, V.V.</creatorcontrib><title>Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets (for ITER)</title><title>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</title><addtitle>TMAG</addtitle><description>A numerical analysis of normal zone propagation along the length of a cable-in-conduit type conductor for large scale magnets is described. The transient temperature propagation along the cable length, the helium pressure rise, and induced helium flow velocities in long cable cooling paths have been calculated on the basis of the computer code developed. As an example, Nb/sub 3/Sn conductors for the International Thermonuclear Experimental Reactor (ITER) have been considered. Results of this investigation show that during quench the velocity of the normal zone in the cable-in-conduit conductor can vary in a wide range from 1 m/s to 40 m/s. It is noted that these velocities depend greatly on the character of magnetic field variation along the conductor length. As a result, the maximum velocity of the normal zone in the ITER central solenoid is higher than that in the ITER toroidal field coil.&lt; &gt;</description><subject>665420 -- Superfluidity-- (1992-)</subject><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>700430 -- Fusion Technology-- Magnet Coils &amp; Fields-- (1992-)</subject><subject>700450 -- Fusion Technology-- Blankets &amp; Cooling Systems-- (1992-)</subject><subject>ALLOYS</subject><subject>CLOSED PLASMA DEVICES</subject><subject>COMPUTER CODES</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Conductors</subject><subject>CONVECTION</subject><subject>COOLING</subject><subject>DIVERTORS</subject><subject>ELECTRIC COILS</subject><subject>ELECTRICAL EQUIPMENT</subject><subject>ELECTROMAGNETS</subject><subject>ELEMENTS</subject><subject>ENERGY TRANSFER</subject><subject>FLOW MODELS</subject><subject>FLUIDS</subject><subject>FORCED CONVECTION</subject><subject>GASES</subject><subject>HEAT TRANSFER</subject><subject>HELIUM</subject><subject>Inductors</subject><subject>ITER TOKAMAK</subject><subject>Large-scale systems</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETS</subject><subject>MASS TRANSFER</subject><subject>MATHEMATICAL MODELS</subject><subject>Niobium</subject><subject>NIOBIUM ALLOYS</subject><subject>NIOBIUM BASE ALLOYS</subject><subject>NONMETALS</subject><subject>Numerical analysis</subject><subject>RARE GASES</subject><subject>SOLENOIDS</subject><subject>SUPERCONDUCTING COILS</subject><subject>SUPERCONDUCTING DEVICES</subject><subject>SUPERCONDUCTING MAGNETS</subject><subject>Temperature</subject><subject>THERMONUCLEAR DEVICES</subject><subject>Tin</subject><subject>TIN ALLOYS</subject><subject>TOKAMAK DEVICES 665412 -- Superconducting Devices-- (1992-)</subject><subject>TOROIDAL FIELD DIVERTORS</subject><subject>TRANSIENTS</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsHr56CJ3tYm2yyu81RSv2AgqD1vCTZSRvZJiXZVurJn26WFTw9zMzDwPsidE3JPaVETPOeYlbmJ2hEBacZIaU4RSNC6CwTvOTn6CLGzzTygpIR-lkYA7rD3mCJuyBdtOA6vIHW7rfYtP4LK9jIg_UBe4cP0Hptu2PvOx-2ssXf3gHeBb-Ta9nZ5FiHjQ8aGqy9bxPMPvb79-kcb-XaQRfxXTLwy2rxNrlEZ0a2Ea7-OEYfj4vV_Dlbvj69zB-Wmc4Z6zIAVeVNJauGABFFyXhBuCY5J4pyyRotGylUo5Tis1KaipKKk7IQudCFklyxMbod_vrY2TqmEKA32juX0tcFK1nFaJImg6SDjzGAqXfBbmU41pTUfb913rPvN7k3g2sB4N8bjr-Fb3XN</recordid><startdate>199201</startdate><enddate>199201</enddate><creator>Volkov, A.F.</creator><creator>Kalinin, V.V.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199201</creationdate><title>Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets (for ITER)</title><author>Volkov, A.F. ; Kalinin, V.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-eeb72d7a7d0e095634504c0240b14a3dcada9bdbbb486af71074065929c5ba4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>665420 -- Superfluidity-- (1992-)</topic><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>700430 -- Fusion Technology-- Magnet Coils &amp; Fields-- (1992-)</topic><topic>700450 -- Fusion Technology-- Blankets &amp; Cooling Systems-- (1992-)</topic><topic>ALLOYS</topic><topic>CLOSED PLASMA DEVICES</topic><topic>COMPUTER CODES</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Conductors</topic><topic>CONVECTION</topic><topic>COOLING</topic><topic>DIVERTORS</topic><topic>ELECTRIC COILS</topic><topic>ELECTRICAL EQUIPMENT</topic><topic>ELECTROMAGNETS</topic><topic>ELEMENTS</topic><topic>ENERGY TRANSFER</topic><topic>FLOW MODELS</topic><topic>FLUIDS</topic><topic>FORCED CONVECTION</topic><topic>GASES</topic><topic>HEAT TRANSFER</topic><topic>HELIUM</topic><topic>Inductors</topic><topic>ITER TOKAMAK</topic><topic>Large-scale systems</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETS</topic><topic>MASS TRANSFER</topic><topic>MATHEMATICAL MODELS</topic><topic>Niobium</topic><topic>NIOBIUM ALLOYS</topic><topic>NIOBIUM BASE ALLOYS</topic><topic>NONMETALS</topic><topic>Numerical analysis</topic><topic>RARE GASES</topic><topic>SOLENOIDS</topic><topic>SUPERCONDUCTING COILS</topic><topic>SUPERCONDUCTING DEVICES</topic><topic>SUPERCONDUCTING MAGNETS</topic><topic>Temperature</topic><topic>THERMONUCLEAR DEVICES</topic><topic>Tin</topic><topic>TIN ALLOYS</topic><topic>TOKAMAK DEVICES 665412 -- Superconducting Devices-- (1992-)</topic><topic>TOROIDAL FIELD DIVERTORS</topic><topic>TRANSIENTS</topic><toplevel>online_resources</toplevel><creatorcontrib>Volkov, A.F.</creatorcontrib><creatorcontrib>Kalinin, V.V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Volkov, A.F.</au><au>Kalinin, V.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets (for ITER)</atitle><jtitle>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</jtitle><stitle>TMAG</stitle><date>1992-01</date><risdate>1992</risdate><volume>28</volume><issue>1</issue><spage>267</spage><epage>270</epage><pages>267-270</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A numerical analysis of normal zone propagation along the length of a cable-in-conduit type conductor for large scale magnets is described. The transient temperature propagation along the cable length, the helium pressure rise, and induced helium flow velocities in long cable cooling paths have been calculated on the basis of the computer code developed. As an example, Nb/sub 3/Sn conductors for the International Thermonuclear Experimental Reactor (ITER) have been considered. Results of this investigation show that during quench the velocity of the normal zone in the cable-in-conduit conductor can vary in a wide range from 1 m/s to 40 m/s. It is noted that these velocities depend greatly on the character of magnetic field variation along the conductor length. As a result, the maximum velocity of the normal zone in the ITER central solenoid is higher than that in the ITER toroidal field coil.&lt; &gt;</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/20.119862</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States), 1992-01, Vol.28 (1), p.267-270
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_119862
source IEEE Electronic Library (IEL)
subjects 665420 -- Superfluidity-- (1992-)
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
700430 -- Fusion Technology-- Magnet Coils & Fields-- (1992-)
700450 -- Fusion Technology-- Blankets & Cooling Systems-- (1992-)
ALLOYS
CLOSED PLASMA DEVICES
COMPUTER CODES
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Conductors
CONVECTION
COOLING
DIVERTORS
ELECTRIC COILS
ELECTRICAL EQUIPMENT
ELECTROMAGNETS
ELEMENTS
ENERGY TRANSFER
FLOW MODELS
FLUIDS
FORCED CONVECTION
GASES
HEAT TRANSFER
HELIUM
Inductors
ITER TOKAMAK
Large-scale systems
MAGNETIC FIELDS
MAGNETS
MASS TRANSFER
MATHEMATICAL MODELS
Niobium
NIOBIUM ALLOYS
NIOBIUM BASE ALLOYS
NONMETALS
Numerical analysis
RARE GASES
SOLENOIDS
SUPERCONDUCTING COILS
SUPERCONDUCTING DEVICES
SUPERCONDUCTING MAGNETS
Temperature
THERMONUCLEAR DEVICES
Tin
TIN ALLOYS
TOKAMAK DEVICES 665412 -- Superconducting Devices-- (1992-)
TOROIDAL FIELD DIVERTORS
TRANSIENTS
title Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets (for ITER)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20a%20transient%20helium%20flow%20behavior%20on%20velocity%20of%20normal%20zone%20propagation%20in%20forced%20cooled%20fusion%20S/C%20magnets%20(for%20ITER)&rft.jtitle=IEEE%20Transactions%20on%20Magnetics%20(Institute%20of%20Electrical%20and%20Electronics%20Engineers);%20(United%20States)&rft.au=Volkov,%20A.F.&rft.date=1992-01&rft.volume=28&rft.issue=1&rft.spage=267&rft.epage=270&rft.pages=267-270&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.119862&rft_dat=%3Ccrossref_RIE%3E10_1109_20_119862%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=119862&rfr_iscdi=true