Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets (for ITER)
A numerical analysis of normal zone propagation along the length of a cable-in-conduit type conductor for large scale magnets is described. The transient temperature propagation along the cable length, the helium pressure rise, and induced helium flow velocities in long cable cooling paths have been...
Gespeichert in:
Veröffentlicht in: | IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States) 1992-01, Vol.28 (1), p.267-270 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | 1 |
container_start_page | 267 |
container_title | IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States) |
container_volume | 28 |
creator | Volkov, A.F. Kalinin, V.V. |
description | A numerical analysis of normal zone propagation along the length of a cable-in-conduit type conductor for large scale magnets is described. The transient temperature propagation along the cable length, the helium pressure rise, and induced helium flow velocities in long cable cooling paths have been calculated on the basis of the computer code developed. As an example, Nb/sub 3/Sn conductors for the International Thermonuclear Experimental Reactor (ITER) have been considered. Results of this investigation show that during quench the velocity of the normal zone in the cable-in-conduit conductor can vary in a wide range from 1 m/s to 40 m/s. It is noted that these velocities depend greatly on the character of magnetic field variation along the conductor length. As a result, the maximum velocity of the normal zone in the ITER central solenoid is higher than that in the ITER toroidal field coil.< > |
doi_str_mv | 10.1109/20.119862 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_119862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>119862</ieee_id><sourcerecordid>10_1109_20_119862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-eeb72d7a7d0e095634504c0240b14a3dcada9bdbbb486af71074065929c5ba4b3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsHr56CJ3tYm2yyu81RSv2AgqD1vCTZSRvZJiXZVurJn26WFTw9zMzDwPsidE3JPaVETPOeYlbmJ2hEBacZIaU4RSNC6CwTvOTn6CLGzzTygpIR-lkYA7rD3mCJuyBdtOA6vIHW7rfYtP4LK9jIg_UBe4cP0Hptu2PvOx-2ssXf3gHeBb-Ta9nZ5FiHjQ8aGqy9bxPMPvb79-kcb-XaQRfxXTLwy2rxNrlEZ0a2Ea7-OEYfj4vV_Dlbvj69zB-Wmc4Z6zIAVeVNJauGABFFyXhBuCY5J4pyyRotGylUo5Tis1KaipKKk7IQudCFklyxMbod_vrY2TqmEKA32juX0tcFK1nFaJImg6SDjzGAqXfBbmU41pTUfb913rPvN7k3g2sB4N8bjr-Fb3XN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets (for ITER)</title><source>IEEE Electronic Library (IEL)</source><creator>Volkov, A.F. ; Kalinin, V.V.</creator><creatorcontrib>Volkov, A.F. ; Kalinin, V.V.</creatorcontrib><description>A numerical analysis of normal zone propagation along the length of a cable-in-conduit type conductor for large scale magnets is described. The transient temperature propagation along the cable length, the helium pressure rise, and induced helium flow velocities in long cable cooling paths have been calculated on the basis of the computer code developed. As an example, Nb/sub 3/Sn conductors for the International Thermonuclear Experimental Reactor (ITER) have been considered. Results of this investigation show that during quench the velocity of the normal zone in the cable-in-conduit conductor can vary in a wide range from 1 m/s to 40 m/s. It is noted that these velocities depend greatly on the character of magnetic field variation along the conductor length. As a result, the maximum velocity of the normal zone in the ITER central solenoid is higher than that in the ITER toroidal field coil.< ></description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.119862</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>665420 -- Superfluidity-- (1992-) ; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; 700430 -- Fusion Technology-- Magnet Coils & Fields-- (1992-) ; 700450 -- Fusion Technology-- Blankets & Cooling Systems-- (1992-) ; ALLOYS ; CLOSED PLASMA DEVICES ; COMPUTER CODES ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Conductors ; CONVECTION ; COOLING ; DIVERTORS ; ELECTRIC COILS ; ELECTRICAL EQUIPMENT ; ELECTROMAGNETS ; ELEMENTS ; ENERGY TRANSFER ; FLOW MODELS ; FLUIDS ; FORCED CONVECTION ; GASES ; HEAT TRANSFER ; HELIUM ; Inductors ; ITER TOKAMAK ; Large-scale systems ; MAGNETIC FIELDS ; MAGNETS ; MASS TRANSFER ; MATHEMATICAL MODELS ; Niobium ; NIOBIUM ALLOYS ; NIOBIUM BASE ALLOYS ; NONMETALS ; Numerical analysis ; RARE GASES ; SOLENOIDS ; SUPERCONDUCTING COILS ; SUPERCONDUCTING DEVICES ; SUPERCONDUCTING MAGNETS ; Temperature ; THERMONUCLEAR DEVICES ; Tin ; TIN ALLOYS ; TOKAMAK DEVICES 665412 -- Superconducting Devices-- (1992-) ; TOROIDAL FIELD DIVERTORS ; TRANSIENTS</subject><ispartof>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States), 1992-01, Vol.28 (1), p.267-270</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-eeb72d7a7d0e095634504c0240b14a3dcada9bdbbb486af71074065929c5ba4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/119862$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,792,881,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/119862$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/5363731$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Volkov, A.F.</creatorcontrib><creatorcontrib>Kalinin, V.V.</creatorcontrib><title>Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets (for ITER)</title><title>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</title><addtitle>TMAG</addtitle><description>A numerical analysis of normal zone propagation along the length of a cable-in-conduit type conductor for large scale magnets is described. The transient temperature propagation along the cable length, the helium pressure rise, and induced helium flow velocities in long cable cooling paths have been calculated on the basis of the computer code developed. As an example, Nb/sub 3/Sn conductors for the International Thermonuclear Experimental Reactor (ITER) have been considered. Results of this investigation show that during quench the velocity of the normal zone in the cable-in-conduit conductor can vary in a wide range from 1 m/s to 40 m/s. It is noted that these velocities depend greatly on the character of magnetic field variation along the conductor length. As a result, the maximum velocity of the normal zone in the ITER central solenoid is higher than that in the ITER toroidal field coil.< ></description><subject>665420 -- Superfluidity-- (1992-)</subject><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>700430 -- Fusion Technology-- Magnet Coils & Fields-- (1992-)</subject><subject>700450 -- Fusion Technology-- Blankets & Cooling Systems-- (1992-)</subject><subject>ALLOYS</subject><subject>CLOSED PLASMA DEVICES</subject><subject>COMPUTER CODES</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Conductors</subject><subject>CONVECTION</subject><subject>COOLING</subject><subject>DIVERTORS</subject><subject>ELECTRIC COILS</subject><subject>ELECTRICAL EQUIPMENT</subject><subject>ELECTROMAGNETS</subject><subject>ELEMENTS</subject><subject>ENERGY TRANSFER</subject><subject>FLOW MODELS</subject><subject>FLUIDS</subject><subject>FORCED CONVECTION</subject><subject>GASES</subject><subject>HEAT TRANSFER</subject><subject>HELIUM</subject><subject>Inductors</subject><subject>ITER TOKAMAK</subject><subject>Large-scale systems</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETS</subject><subject>MASS TRANSFER</subject><subject>MATHEMATICAL MODELS</subject><subject>Niobium</subject><subject>NIOBIUM ALLOYS</subject><subject>NIOBIUM BASE ALLOYS</subject><subject>NONMETALS</subject><subject>Numerical analysis</subject><subject>RARE GASES</subject><subject>SOLENOIDS</subject><subject>SUPERCONDUCTING COILS</subject><subject>SUPERCONDUCTING DEVICES</subject><subject>SUPERCONDUCTING MAGNETS</subject><subject>Temperature</subject><subject>THERMONUCLEAR DEVICES</subject><subject>Tin</subject><subject>TIN ALLOYS</subject><subject>TOKAMAK DEVICES 665412 -- Superconducting Devices-- (1992-)</subject><subject>TOROIDAL FIELD DIVERTORS</subject><subject>TRANSIENTS</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsHr56CJ3tYm2yyu81RSv2AgqD1vCTZSRvZJiXZVurJn26WFTw9zMzDwPsidE3JPaVETPOeYlbmJ2hEBacZIaU4RSNC6CwTvOTn6CLGzzTygpIR-lkYA7rD3mCJuyBdtOA6vIHW7rfYtP4LK9jIg_UBe4cP0Hptu2PvOx-2ssXf3gHeBb-Ta9nZ5FiHjQ8aGqy9bxPMPvb79-kcb-XaQRfxXTLwy2rxNrlEZ0a2Ea7-OEYfj4vV_Dlbvj69zB-Wmc4Z6zIAVeVNJauGABFFyXhBuCY5J4pyyRotGylUo5Tis1KaipKKk7IQudCFklyxMbod_vrY2TqmEKA32juX0tcFK1nFaJImg6SDjzGAqXfBbmU41pTUfb913rPvN7k3g2sB4N8bjr-Fb3XN</recordid><startdate>199201</startdate><enddate>199201</enddate><creator>Volkov, A.F.</creator><creator>Kalinin, V.V.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199201</creationdate><title>Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets (for ITER)</title><author>Volkov, A.F. ; Kalinin, V.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-eeb72d7a7d0e095634504c0240b14a3dcada9bdbbb486af71074065929c5ba4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>665420 -- Superfluidity-- (1992-)</topic><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>700430 -- Fusion Technology-- Magnet Coils & Fields-- (1992-)</topic><topic>700450 -- Fusion Technology-- Blankets & Cooling Systems-- (1992-)</topic><topic>ALLOYS</topic><topic>CLOSED PLASMA DEVICES</topic><topic>COMPUTER CODES</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Conductors</topic><topic>CONVECTION</topic><topic>COOLING</topic><topic>DIVERTORS</topic><topic>ELECTRIC COILS</topic><topic>ELECTRICAL EQUIPMENT</topic><topic>ELECTROMAGNETS</topic><topic>ELEMENTS</topic><topic>ENERGY TRANSFER</topic><topic>FLOW MODELS</topic><topic>FLUIDS</topic><topic>FORCED CONVECTION</topic><topic>GASES</topic><topic>HEAT TRANSFER</topic><topic>HELIUM</topic><topic>Inductors</topic><topic>ITER TOKAMAK</topic><topic>Large-scale systems</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETS</topic><topic>MASS TRANSFER</topic><topic>MATHEMATICAL MODELS</topic><topic>Niobium</topic><topic>NIOBIUM ALLOYS</topic><topic>NIOBIUM BASE ALLOYS</topic><topic>NONMETALS</topic><topic>Numerical analysis</topic><topic>RARE GASES</topic><topic>SOLENOIDS</topic><topic>SUPERCONDUCTING COILS</topic><topic>SUPERCONDUCTING DEVICES</topic><topic>SUPERCONDUCTING MAGNETS</topic><topic>Temperature</topic><topic>THERMONUCLEAR DEVICES</topic><topic>Tin</topic><topic>TIN ALLOYS</topic><topic>TOKAMAK DEVICES 665412 -- Superconducting Devices-- (1992-)</topic><topic>TOROIDAL FIELD DIVERTORS</topic><topic>TRANSIENTS</topic><toplevel>online_resources</toplevel><creatorcontrib>Volkov, A.F.</creatorcontrib><creatorcontrib>Kalinin, V.V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Volkov, A.F.</au><au>Kalinin, V.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets (for ITER)</atitle><jtitle>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</jtitle><stitle>TMAG</stitle><date>1992-01</date><risdate>1992</risdate><volume>28</volume><issue>1</issue><spage>267</spage><epage>270</epage><pages>267-270</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A numerical analysis of normal zone propagation along the length of a cable-in-conduit type conductor for large scale magnets is described. The transient temperature propagation along the cable length, the helium pressure rise, and induced helium flow velocities in long cable cooling paths have been calculated on the basis of the computer code developed. As an example, Nb/sub 3/Sn conductors for the International Thermonuclear Experimental Reactor (ITER) have been considered. Results of this investigation show that during quench the velocity of the normal zone in the cable-in-conduit conductor can vary in a wide range from 1 m/s to 40 m/s. It is noted that these velocities depend greatly on the character of magnetic field variation along the conductor length. As a result, the maximum velocity of the normal zone in the ITER central solenoid is higher than that in the ITER toroidal field coil.< ></abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/20.119862</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States), 1992-01, Vol.28 (1), p.267-270 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_119862 |
source | IEEE Electronic Library (IEL) |
subjects | 665420 -- Superfluidity-- (1992-) 70 PLASMA PHYSICS AND FUSION TECHNOLOGY 700430 -- Fusion Technology-- Magnet Coils & Fields-- (1992-) 700450 -- Fusion Technology-- Blankets & Cooling Systems-- (1992-) ALLOYS CLOSED PLASMA DEVICES COMPUTER CODES CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Conductors CONVECTION COOLING DIVERTORS ELECTRIC COILS ELECTRICAL EQUIPMENT ELECTROMAGNETS ELEMENTS ENERGY TRANSFER FLOW MODELS FLUIDS FORCED CONVECTION GASES HEAT TRANSFER HELIUM Inductors ITER TOKAMAK Large-scale systems MAGNETIC FIELDS MAGNETS MASS TRANSFER MATHEMATICAL MODELS Niobium NIOBIUM ALLOYS NIOBIUM BASE ALLOYS NONMETALS Numerical analysis RARE GASES SOLENOIDS SUPERCONDUCTING COILS SUPERCONDUCTING DEVICES SUPERCONDUCTING MAGNETS Temperature THERMONUCLEAR DEVICES Tin TIN ALLOYS TOKAMAK DEVICES 665412 -- Superconducting Devices-- (1992-) TOROIDAL FIELD DIVERTORS TRANSIENTS |
title | Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets (for ITER) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20a%20transient%20helium%20flow%20behavior%20on%20velocity%20of%20normal%20zone%20propagation%20in%20forced%20cooled%20fusion%20S/C%20magnets%20(for%20ITER)&rft.jtitle=IEEE%20Transactions%20on%20Magnetics%20(Institute%20of%20Electrical%20and%20Electronics%20Engineers);%20(United%20States)&rft.au=Volkov,%20A.F.&rft.date=1992-01&rft.volume=28&rft.issue=1&rft.spage=267&rft.epage=270&rft.pages=267-270&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.119862&rft_dat=%3Ccrossref_RIE%3E10_1109_20_119862%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=119862&rfr_iscdi=true |