Deadlock analysis of Petri nets using the transitive matrix

In this paper, we focus on the analysis of the deadlock problem in Petri nets using the transitive matrix. The transitive matrix may explain all relations between the place and transitions in Petri nets. Since the deadlock problem occurred by the relationship between more than two transitions based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yujin Song, Jongkun Lee
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 694 vol.2
container_issue
container_start_page 689
container_title
container_volume 2
creator Yujin Song
Jongkun Lee
description In this paper, we focus on the analysis of the deadlock problem in Petri nets using the transitive matrix. The transitive matrix may explain all relations between the place and transitions in Petri nets. Since the deadlock problem occurred by the relationship between more than two transitions based on the conflict places, we propose a find deadlock status algorithm after define the deadlock-free condition in the transitive matrix. Also, we show an example.
doi_str_mv 10.1109/SICE.2002.1195239
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1195239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1195239</ieee_id><sourcerecordid>1195239</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-9a510fefcae5b34f106b134d8fff49cfaaebaf1e2dc8eb58a4fe1733cc57cb613</originalsourceid><addsrcrecordid>eNotj9FKw0AQRRdEUGo-QHzZH0idyWaTLD5JrLZQUFCfy2Qzo6ttKtlV7N8bsHDhcrhw4Cp1iTBHBHf9vGoX8wKgmNDZwrgTlbm6gSmmrgzimcpi_AAAdJWD2p2rmzumfrv3n5oG2h5iiHov-onTGPTAKervGIY3nd5Zp5GGGFL4Yb2jaf-9UKdC28jZsWfq9X7x0i7z9ePDqr1d5wHBptyRRRAWT2w7UwpC1aEp-0ZESueFiDsS5KL3DXe2oVIYa2O8t7XvKjQzdfXvDcy8-RrDjsbD5njR_AFdM0hT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deadlock analysis of Petri nets using the transitive matrix</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yujin Song ; Jongkun Lee</creator><creatorcontrib>Yujin Song ; Jongkun Lee</creatorcontrib><description>In this paper, we focus on the analysis of the deadlock problem in Petri nets using the transitive matrix. The transitive matrix may explain all relations between the place and transitions in Petri nets. Since the deadlock problem occurred by the relationship between more than two transitions based on the conflict places, we propose a find deadlock status algorithm after define the deadlock-free condition in the transitive matrix. Also, we show an example.</description><identifier>ISBN: 9780780376311</identifier><identifier>ISBN: 0780376315</identifier><identifier>DOI: 10.1109/SICE.2002.1195239</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Concurrent computing ; Explosions ; Flexible manufacturing systems ; Mathematical model ; Petri nets ; Production ; Scheduling algorithm ; State-space methods ; System recovery</subject><ispartof>Proceedings of the 41st SICE Annual Conference. SICE 2002, 2002, Vol.2, p.689-694 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1195239$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1195239$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yujin Song</creatorcontrib><creatorcontrib>Jongkun Lee</creatorcontrib><title>Deadlock analysis of Petri nets using the transitive matrix</title><title>Proceedings of the 41st SICE Annual Conference. SICE 2002</title><addtitle>SICE</addtitle><description>In this paper, we focus on the analysis of the deadlock problem in Petri nets using the transitive matrix. The transitive matrix may explain all relations between the place and transitions in Petri nets. Since the deadlock problem occurred by the relationship between more than two transitions based on the conflict places, we propose a find deadlock status algorithm after define the deadlock-free condition in the transitive matrix. Also, we show an example.</description><subject>Algorithm design and analysis</subject><subject>Concurrent computing</subject><subject>Explosions</subject><subject>Flexible manufacturing systems</subject><subject>Mathematical model</subject><subject>Petri nets</subject><subject>Production</subject><subject>Scheduling algorithm</subject><subject>State-space methods</subject><subject>System recovery</subject><isbn>9780780376311</isbn><isbn>0780376315</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj9FKw0AQRRdEUGo-QHzZH0idyWaTLD5JrLZQUFCfy2Qzo6ttKtlV7N8bsHDhcrhw4Cp1iTBHBHf9vGoX8wKgmNDZwrgTlbm6gSmmrgzimcpi_AAAdJWD2p2rmzumfrv3n5oG2h5iiHov-onTGPTAKervGIY3nd5Zp5GGGFL4Yb2jaf-9UKdC28jZsWfq9X7x0i7z9ePDqr1d5wHBptyRRRAWT2w7UwpC1aEp-0ZESueFiDsS5KL3DXe2oVIYa2O8t7XvKjQzdfXvDcy8-RrDjsbD5njR_AFdM0hT</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Yujin Song</creator><creator>Jongkun Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Deadlock analysis of Petri nets using the transitive matrix</title><author>Yujin Song ; Jongkun Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-9a510fefcae5b34f106b134d8fff49cfaaebaf1e2dc8eb58a4fe1733cc57cb613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithm design and analysis</topic><topic>Concurrent computing</topic><topic>Explosions</topic><topic>Flexible manufacturing systems</topic><topic>Mathematical model</topic><topic>Petri nets</topic><topic>Production</topic><topic>Scheduling algorithm</topic><topic>State-space methods</topic><topic>System recovery</topic><toplevel>online_resources</toplevel><creatorcontrib>Yujin Song</creatorcontrib><creatorcontrib>Jongkun Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yujin Song</au><au>Jongkun Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deadlock analysis of Petri nets using the transitive matrix</atitle><btitle>Proceedings of the 41st SICE Annual Conference. SICE 2002</btitle><stitle>SICE</stitle><date>2002</date><risdate>2002</risdate><volume>2</volume><spage>689</spage><epage>694 vol.2</epage><pages>689-694 vol.2</pages><isbn>9780780376311</isbn><isbn>0780376315</isbn><abstract>In this paper, we focus on the analysis of the deadlock problem in Petri nets using the transitive matrix. The transitive matrix may explain all relations between the place and transitions in Petri nets. Since the deadlock problem occurred by the relationship between more than two transitions based on the conflict places, we propose a find deadlock status algorithm after define the deadlock-free condition in the transitive matrix. Also, we show an example.</abstract><pub>IEEE</pub><doi>10.1109/SICE.2002.1195239</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780376311
ispartof Proceedings of the 41st SICE Annual Conference. SICE 2002, 2002, Vol.2, p.689-694 vol.2
issn
language eng
recordid cdi_ieee_primary_1195239
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Concurrent computing
Explosions
Flexible manufacturing systems
Mathematical model
Petri nets
Production
Scheduling algorithm
State-space methods
System recovery
title Deadlock analysis of Petri nets using the transitive matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deadlock%20analysis%20of%20Petri%20nets%20using%20the%20transitive%20matrix&rft.btitle=Proceedings%20of%20the%2041st%20SICE%20Annual%20Conference.%20SICE%202002&rft.au=Yujin%20Song&rft.date=2002&rft.volume=2&rft.spage=689&rft.epage=694%20vol.2&rft.pages=689-694%20vol.2&rft.isbn=9780780376311&rft.isbn_list=0780376315&rft_id=info:doi/10.1109/SICE.2002.1195239&rft_dat=%3Cieee_6IE%3E1195239%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1195239&rfr_iscdi=true