Deadlock analysis of Petri nets using the transitive matrix
In this paper, we focus on the analysis of the deadlock problem in Petri nets using the transitive matrix. The transitive matrix may explain all relations between the place and transitions in Petri nets. Since the deadlock problem occurred by the relationship between more than two transitions based...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 694 vol.2 |
---|---|
container_issue | |
container_start_page | 689 |
container_title | |
container_volume | 2 |
creator | Yujin Song Jongkun Lee |
description | In this paper, we focus on the analysis of the deadlock problem in Petri nets using the transitive matrix. The transitive matrix may explain all relations between the place and transitions in Petri nets. Since the deadlock problem occurred by the relationship between more than two transitions based on the conflict places, we propose a find deadlock status algorithm after define the deadlock-free condition in the transitive matrix. Also, we show an example. |
doi_str_mv | 10.1109/SICE.2002.1195239 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1195239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1195239</ieee_id><sourcerecordid>1195239</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-9a510fefcae5b34f106b134d8fff49cfaaebaf1e2dc8eb58a4fe1733cc57cb613</originalsourceid><addsrcrecordid>eNotj9FKw0AQRRdEUGo-QHzZH0idyWaTLD5JrLZQUFCfy2Qzo6ttKtlV7N8bsHDhcrhw4Cp1iTBHBHf9vGoX8wKgmNDZwrgTlbm6gSmmrgzimcpi_AAAdJWD2p2rmzumfrv3n5oG2h5iiHov-onTGPTAKervGIY3nd5Zp5GGGFL4Yb2jaf-9UKdC28jZsWfq9X7x0i7z9ePDqr1d5wHBptyRRRAWT2w7UwpC1aEp-0ZESueFiDsS5KL3DXe2oVIYa2O8t7XvKjQzdfXvDcy8-RrDjsbD5njR_AFdM0hT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deadlock analysis of Petri nets using the transitive matrix</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yujin Song ; Jongkun Lee</creator><creatorcontrib>Yujin Song ; Jongkun Lee</creatorcontrib><description>In this paper, we focus on the analysis of the deadlock problem in Petri nets using the transitive matrix. The transitive matrix may explain all relations between the place and transitions in Petri nets. Since the deadlock problem occurred by the relationship between more than two transitions based on the conflict places, we propose a find deadlock status algorithm after define the deadlock-free condition in the transitive matrix. Also, we show an example.</description><identifier>ISBN: 9780780376311</identifier><identifier>ISBN: 0780376315</identifier><identifier>DOI: 10.1109/SICE.2002.1195239</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Concurrent computing ; Explosions ; Flexible manufacturing systems ; Mathematical model ; Petri nets ; Production ; Scheduling algorithm ; State-space methods ; System recovery</subject><ispartof>Proceedings of the 41st SICE Annual Conference. SICE 2002, 2002, Vol.2, p.689-694 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1195239$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1195239$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yujin Song</creatorcontrib><creatorcontrib>Jongkun Lee</creatorcontrib><title>Deadlock analysis of Petri nets using the transitive matrix</title><title>Proceedings of the 41st SICE Annual Conference. SICE 2002</title><addtitle>SICE</addtitle><description>In this paper, we focus on the analysis of the deadlock problem in Petri nets using the transitive matrix. The transitive matrix may explain all relations between the place and transitions in Petri nets. Since the deadlock problem occurred by the relationship between more than two transitions based on the conflict places, we propose a find deadlock status algorithm after define the deadlock-free condition in the transitive matrix. Also, we show an example.</description><subject>Algorithm design and analysis</subject><subject>Concurrent computing</subject><subject>Explosions</subject><subject>Flexible manufacturing systems</subject><subject>Mathematical model</subject><subject>Petri nets</subject><subject>Production</subject><subject>Scheduling algorithm</subject><subject>State-space methods</subject><subject>System recovery</subject><isbn>9780780376311</isbn><isbn>0780376315</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj9FKw0AQRRdEUGo-QHzZH0idyWaTLD5JrLZQUFCfy2Qzo6ttKtlV7N8bsHDhcrhw4Cp1iTBHBHf9vGoX8wKgmNDZwrgTlbm6gSmmrgzimcpi_AAAdJWD2p2rmzumfrv3n5oG2h5iiHov-onTGPTAKervGIY3nd5Zp5GGGFL4Yb2jaf-9UKdC28jZsWfq9X7x0i7z9ePDqr1d5wHBptyRRRAWT2w7UwpC1aEp-0ZESueFiDsS5KL3DXe2oVIYa2O8t7XvKjQzdfXvDcy8-RrDjsbD5njR_AFdM0hT</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Yujin Song</creator><creator>Jongkun Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Deadlock analysis of Petri nets using the transitive matrix</title><author>Yujin Song ; Jongkun Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-9a510fefcae5b34f106b134d8fff49cfaaebaf1e2dc8eb58a4fe1733cc57cb613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithm design and analysis</topic><topic>Concurrent computing</topic><topic>Explosions</topic><topic>Flexible manufacturing systems</topic><topic>Mathematical model</topic><topic>Petri nets</topic><topic>Production</topic><topic>Scheduling algorithm</topic><topic>State-space methods</topic><topic>System recovery</topic><toplevel>online_resources</toplevel><creatorcontrib>Yujin Song</creatorcontrib><creatorcontrib>Jongkun Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yujin Song</au><au>Jongkun Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deadlock analysis of Petri nets using the transitive matrix</atitle><btitle>Proceedings of the 41st SICE Annual Conference. SICE 2002</btitle><stitle>SICE</stitle><date>2002</date><risdate>2002</risdate><volume>2</volume><spage>689</spage><epage>694 vol.2</epage><pages>689-694 vol.2</pages><isbn>9780780376311</isbn><isbn>0780376315</isbn><abstract>In this paper, we focus on the analysis of the deadlock problem in Petri nets using the transitive matrix. The transitive matrix may explain all relations between the place and transitions in Petri nets. Since the deadlock problem occurred by the relationship between more than two transitions based on the conflict places, we propose a find deadlock status algorithm after define the deadlock-free condition in the transitive matrix. Also, we show an example.</abstract><pub>IEEE</pub><doi>10.1109/SICE.2002.1195239</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780376311 |
ispartof | Proceedings of the 41st SICE Annual Conference. SICE 2002, 2002, Vol.2, p.689-694 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1195239 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Concurrent computing Explosions Flexible manufacturing systems Mathematical model Petri nets Production Scheduling algorithm State-space methods System recovery |
title | Deadlock analysis of Petri nets using the transitive matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deadlock%20analysis%20of%20Petri%20nets%20using%20the%20transitive%20matrix&rft.btitle=Proceedings%20of%20the%2041st%20SICE%20Annual%20Conference.%20SICE%202002&rft.au=Yujin%20Song&rft.date=2002&rft.volume=2&rft.spage=689&rft.epage=694%20vol.2&rft.pages=689-694%20vol.2&rft.isbn=9780780376311&rft.isbn_list=0780376315&rft_id=info:doi/10.1109/SICE.2002.1195239&rft_dat=%3Cieee_6IE%3E1195239%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1195239&rfr_iscdi=true |