Statistical approaches to DDoS attack detection and response

The nature of the threats posed by distributed denial of service (DDoS) attacks on large networks, such as the Internet, demands effective detection and response methods. These methods must be deployed not only at the edge but also at the core of the network This paper presents methods to identify D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Feinstein, L., Schnackenberg, D., Balupari, R., Kindred, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314 vol.1
container_issue
container_start_page 303
container_title
container_volume 1
creator Feinstein, L.
Schnackenberg, D.
Balupari, R.
Kindred, D.
description The nature of the threats posed by distributed denial of service (DDoS) attacks on large networks, such as the Internet, demands effective detection and response methods. These methods must be deployed not only at the edge but also at the core of the network This paper presents methods to identify DDoS attacks by computing entropy and frequency-sorted distributions of selected packet attributes. The DDoS attacks show anomalies in the characteristics of the selected packet attributes. The detection accuracy and performance are analyzed using live traffic traces from a variety of network environments ranging from points in the core of the Internet to those inside an edge network The results indicate that these methods can be effective against current attacks and suggest directions for improving detection of more stealthy attacks. We also describe our detection-response prototype and how the detectors can be extended to make effective response decisions.
doi_str_mv 10.1109/DISCEX.2003.1194894
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1194894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1194894</ieee_id><sourcerecordid>1194894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-3ba419a8b8186fcb6a5c33e1767a1a7e7880626f105dc1ab501968d1bc56c5bc3</originalsourceid><addsrcrecordid>eNotj09Lw0AUxBeKYKn5BL3sF0jd183-Ay-SVC0UPETBW3m7ecFozYbsXvz2BuxcZvgNDAxjWxA7AOHum2NbHz52eyHkAlxlXbVihTNWGO0U2CXdsiKlL7FIugqkWrOHNmMeUh4CXjhO0xwxfFLiOfKmiS3HnDF8844yhTzEkePY8ZnSFMdEd-ymx0ui4uob9v50eKtfytPr87F-PJVBSp1L6bECh9ZbsLoPXqNaCgKjDQIaMtYKvdc9CNUFQK8EOG078EHpoHyQG7b93x2I6DzNww_Ov-frR_kH1e5HZQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Statistical approaches to DDoS attack detection and response</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Feinstein, L. ; Schnackenberg, D. ; Balupari, R. ; Kindred, D.</creator><creatorcontrib>Feinstein, L. ; Schnackenberg, D. ; Balupari, R. ; Kindred, D.</creatorcontrib><description>The nature of the threats posed by distributed denial of service (DDoS) attacks on large networks, such as the Internet, demands effective detection and response methods. These methods must be deployed not only at the edge but also at the core of the network This paper presents methods to identify DDoS attacks by computing entropy and frequency-sorted distributions of selected packet attributes. The DDoS attacks show anomalies in the characteristics of the selected packet attributes. The detection accuracy and performance are analyzed using live traffic traces from a variety of network environments ranging from points in the core of the Internet to those inside an edge network The results indicate that these methods can be effective against current attacks and suggest directions for improving detection of more stealthy attacks. We also describe our detection-response prototype and how the detectors can be extended to make effective response decisions.</description><identifier>ISBN: 9780769518978</identifier><identifier>ISBN: 0769518974</identifier><identifier>DOI: 10.1109/DISCEX.2003.1194894</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer crime ; Computer networks ; Distributed computing ; Entropy ; Frequency ; IP networks ; Performance analysis ; Prototypes ; Telecommunication traffic ; Web and internet services</subject><ispartof>Proceedings DARPA Information Survivability Conference and Exposition, 2003, Vol.1, p.303-314 vol.1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-3ba419a8b8186fcb6a5c33e1767a1a7e7880626f105dc1ab501968d1bc56c5bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1194894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1194894$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feinstein, L.</creatorcontrib><creatorcontrib>Schnackenberg, D.</creatorcontrib><creatorcontrib>Balupari, R.</creatorcontrib><creatorcontrib>Kindred, D.</creatorcontrib><title>Statistical approaches to DDoS attack detection and response</title><title>Proceedings DARPA Information Survivability Conference and Exposition</title><addtitle>DISCEX</addtitle><description>The nature of the threats posed by distributed denial of service (DDoS) attacks on large networks, such as the Internet, demands effective detection and response methods. These methods must be deployed not only at the edge but also at the core of the network This paper presents methods to identify DDoS attacks by computing entropy and frequency-sorted distributions of selected packet attributes. The DDoS attacks show anomalies in the characteristics of the selected packet attributes. The detection accuracy and performance are analyzed using live traffic traces from a variety of network environments ranging from points in the core of the Internet to those inside an edge network The results indicate that these methods can be effective against current attacks and suggest directions for improving detection of more stealthy attacks. We also describe our detection-response prototype and how the detectors can be extended to make effective response decisions.</description><subject>Computer crime</subject><subject>Computer networks</subject><subject>Distributed computing</subject><subject>Entropy</subject><subject>Frequency</subject><subject>IP networks</subject><subject>Performance analysis</subject><subject>Prototypes</subject><subject>Telecommunication traffic</subject><subject>Web and internet services</subject><isbn>9780769518978</isbn><isbn>0769518974</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj09Lw0AUxBeKYKn5BL3sF0jd183-Ay-SVC0UPETBW3m7ecFozYbsXvz2BuxcZvgNDAxjWxA7AOHum2NbHz52eyHkAlxlXbVihTNWGO0U2CXdsiKlL7FIugqkWrOHNmMeUh4CXjhO0xwxfFLiOfKmiS3HnDF8844yhTzEkePY8ZnSFMdEd-ymx0ui4uob9v50eKtfytPr87F-PJVBSp1L6bECh9ZbsLoPXqNaCgKjDQIaMtYKvdc9CNUFQK8EOG078EHpoHyQG7b93x2I6DzNww_Ov-frR_kH1e5HZQ</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Feinstein, L.</creator><creator>Schnackenberg, D.</creator><creator>Balupari, R.</creator><creator>Kindred, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Statistical approaches to DDoS attack detection and response</title><author>Feinstein, L. ; Schnackenberg, D. ; Balupari, R. ; Kindred, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-3ba419a8b8186fcb6a5c33e1767a1a7e7880626f105dc1ab501968d1bc56c5bc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computer crime</topic><topic>Computer networks</topic><topic>Distributed computing</topic><topic>Entropy</topic><topic>Frequency</topic><topic>IP networks</topic><topic>Performance analysis</topic><topic>Prototypes</topic><topic>Telecommunication traffic</topic><topic>Web and internet services</topic><toplevel>online_resources</toplevel><creatorcontrib>Feinstein, L.</creatorcontrib><creatorcontrib>Schnackenberg, D.</creatorcontrib><creatorcontrib>Balupari, R.</creatorcontrib><creatorcontrib>Kindred, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feinstein, L.</au><au>Schnackenberg, D.</au><au>Balupari, R.</au><au>Kindred, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical approaches to DDoS attack detection and response</atitle><btitle>Proceedings DARPA Information Survivability Conference and Exposition</btitle><stitle>DISCEX</stitle><date>2003</date><risdate>2003</risdate><volume>1</volume><spage>303</spage><epage>314 vol.1</epage><pages>303-314 vol.1</pages><isbn>9780769518978</isbn><isbn>0769518974</isbn><abstract>The nature of the threats posed by distributed denial of service (DDoS) attacks on large networks, such as the Internet, demands effective detection and response methods. These methods must be deployed not only at the edge but also at the core of the network This paper presents methods to identify DDoS attacks by computing entropy and frequency-sorted distributions of selected packet attributes. The DDoS attacks show anomalies in the characteristics of the selected packet attributes. The detection accuracy and performance are analyzed using live traffic traces from a variety of network environments ranging from points in the core of the Internet to those inside an edge network The results indicate that these methods can be effective against current attacks and suggest directions for improving detection of more stealthy attacks. We also describe our detection-response prototype and how the detectors can be extended to make effective response decisions.</abstract><pub>IEEE</pub><doi>10.1109/DISCEX.2003.1194894</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769518978
ispartof Proceedings DARPA Information Survivability Conference and Exposition, 2003, Vol.1, p.303-314 vol.1
issn
language eng
recordid cdi_ieee_primary_1194894
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer crime
Computer networks
Distributed computing
Entropy
Frequency
IP networks
Performance analysis
Prototypes
Telecommunication traffic
Web and internet services
title Statistical approaches to DDoS attack detection and response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20approaches%20to%20DDoS%20attack%20detection%20and%20response&rft.btitle=Proceedings%20DARPA%20Information%20Survivability%20Conference%20and%20Exposition&rft.au=Feinstein,%20L.&rft.date=2003&rft.volume=1&rft.spage=303&rft.epage=314%20vol.1&rft.pages=303-314%20vol.1&rft.isbn=9780769518978&rft.isbn_list=0769518974&rft_id=info:doi/10.1109/DISCEX.2003.1194894&rft_dat=%3Cieee_6IE%3E1194894%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1194894&rfr_iscdi=true