Software clustering techniques and the use of combined algorithm

As the age of software systems increases they tend to deviate from their actual design and architecture. It becomes more and more difficult to manage and maintain such systems. We explore the idea of software clustering for reverse engineering and re-modularization. Clustering together software arti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Saeed, M., Maqbool, O., Babri, H.A., Hassan, S.Z., Sarwar, S.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue
container_start_page 301
container_title
container_volume
creator Saeed, M.
Maqbool, O.
Babri, H.A.
Hassan, S.Z.
Sarwar, S.M.
description As the age of software systems increases they tend to deviate from their actual design and architecture. It becomes more and more difficult to manage and maintain such systems. We explore the idea of software clustering for reverse engineering and re-modularization. Clustering together software artifacts provides an automatic technique for discovering high level abstract entities within a system. Previous work on software clustering has identified many areas where further investigation is required. Clustering techniques should be tuned to the type of system they are being applied to. In this paper we explore a new clustering algorithm called the 'combined' algorithm which, as our experiments show, provides more promising results for software clustering than the previously used algorithms. We also analyze the behavior of correlation and distance metrics for binary features.
doi_str_mv 10.1109/CSMR.2003.1192438
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1192438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1192438</ieee_id><sourcerecordid>1192438</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c4755820b8d36302f772e762cedd103320aef4fb067b1230c8609c80834c5d293</originalsourceid><addsrcrecordid>eNotj8tKxDAUQIMPcBznA8RNfqDjzTvZKcUXjAiOroc2uZlG-tCmRfx7BWd1OJsDh5BLBmvGwF2X2-fXNQcQf-q4FPaILLiWUBhl5DFZOWPBaKeYA-5OyIIpIQslFDsj5zl_AHCQDBbkZjvE6bsakfp2zhOOqd_TCX3Tp68ZM636QKcG6ZyRDpH6oatTj4FW7X4Y09R0F-Q0Vm3G1YFL8n5_91Y-FpuXh6fydlMkZtRUeGmUshxqG4QWwKMxHI3mHkNgIASHCqOMNWhTMy7AWw3OW7BCehW4E0ty9d9NiLj7HFNXjT-7w7z4BfB3SrI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Software clustering techniques and the use of combined algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Saeed, M. ; Maqbool, O. ; Babri, H.A. ; Hassan, S.Z. ; Sarwar, S.M.</creator><creatorcontrib>Saeed, M. ; Maqbool, O. ; Babri, H.A. ; Hassan, S.Z. ; Sarwar, S.M.</creatorcontrib><description>As the age of software systems increases they tend to deviate from their actual design and architecture. It becomes more and more difficult to manage and maintain such systems. We explore the idea of software clustering for reverse engineering and re-modularization. Clustering together software artifacts provides an automatic technique for discovering high level abstract entities within a system. Previous work on software clustering has identified many areas where further investigation is required. Clustering techniques should be tuned to the type of system they are being applied to. In this paper we explore a new clustering algorithm called the 'combined' algorithm which, as our experiments show, provides more promising results for software clustering than the previously used algorithms. We also analyze the behavior of correlation and distance metrics for binary features.</description><identifier>ISSN: 1534-5351</identifier><identifier>ISBN: 9780769519029</identifier><identifier>ISBN: 0769519024</identifier><identifier>EISSN: 2640-7574</identifier><identifier>DOI: 10.1109/CSMR.2003.1192438</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Euclidean distance ; Open source software ; Partitioning algorithms ; Software algorithms ; Software maintenance ; Software measurement ; System testing</subject><ispartof>Seventh European Conference onSoftware Maintenance and Reengineering, 2003. Proceedings, 2003, p.301-306</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1192438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1192438$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saeed, M.</creatorcontrib><creatorcontrib>Maqbool, O.</creatorcontrib><creatorcontrib>Babri, H.A.</creatorcontrib><creatorcontrib>Hassan, S.Z.</creatorcontrib><creatorcontrib>Sarwar, S.M.</creatorcontrib><title>Software clustering techniques and the use of combined algorithm</title><title>Seventh European Conference onSoftware Maintenance and Reengineering, 2003. Proceedings</title><addtitle>CSMR</addtitle><description>As the age of software systems increases they tend to deviate from their actual design and architecture. It becomes more and more difficult to manage and maintain such systems. We explore the idea of software clustering for reverse engineering and re-modularization. Clustering together software artifacts provides an automatic technique for discovering high level abstract entities within a system. Previous work on software clustering has identified many areas where further investigation is required. Clustering techniques should be tuned to the type of system they are being applied to. In this paper we explore a new clustering algorithm called the 'combined' algorithm which, as our experiments show, provides more promising results for software clustering than the previously used algorithms. We also analyze the behavior of correlation and distance metrics for binary features.</description><subject>Clustering algorithms</subject><subject>Euclidean distance</subject><subject>Open source software</subject><subject>Partitioning algorithms</subject><subject>Software algorithms</subject><subject>Software maintenance</subject><subject>Software measurement</subject><subject>System testing</subject><issn>1534-5351</issn><issn>2640-7574</issn><isbn>9780769519029</isbn><isbn>0769519024</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKxDAUQIMPcBznA8RNfqDjzTvZKcUXjAiOroc2uZlG-tCmRfx7BWd1OJsDh5BLBmvGwF2X2-fXNQcQf-q4FPaILLiWUBhl5DFZOWPBaKeYA-5OyIIpIQslFDsj5zl_AHCQDBbkZjvE6bsakfp2zhOOqd_TCX3Tp68ZM636QKcG6ZyRDpH6oatTj4FW7X4Y09R0F-Q0Vm3G1YFL8n5_91Y-FpuXh6fydlMkZtRUeGmUshxqG4QWwKMxHI3mHkNgIASHCqOMNWhTMy7AWw3OW7BCehW4E0ty9d9NiLj7HFNXjT-7w7z4BfB3SrI</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Saeed, M.</creator><creator>Maqbool, O.</creator><creator>Babri, H.A.</creator><creator>Hassan, S.Z.</creator><creator>Sarwar, S.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Software clustering techniques and the use of combined algorithm</title><author>Saeed, M. ; Maqbool, O. ; Babri, H.A. ; Hassan, S.Z. ; Sarwar, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c4755820b8d36302f772e762cedd103320aef4fb067b1230c8609c80834c5d293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Clustering algorithms</topic><topic>Euclidean distance</topic><topic>Open source software</topic><topic>Partitioning algorithms</topic><topic>Software algorithms</topic><topic>Software maintenance</topic><topic>Software measurement</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Saeed, M.</creatorcontrib><creatorcontrib>Maqbool, O.</creatorcontrib><creatorcontrib>Babri, H.A.</creatorcontrib><creatorcontrib>Hassan, S.Z.</creatorcontrib><creatorcontrib>Sarwar, S.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saeed, M.</au><au>Maqbool, O.</au><au>Babri, H.A.</au><au>Hassan, S.Z.</au><au>Sarwar, S.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Software clustering techniques and the use of combined algorithm</atitle><btitle>Seventh European Conference onSoftware Maintenance and Reengineering, 2003. Proceedings</btitle><stitle>CSMR</stitle><date>2003</date><risdate>2003</risdate><spage>301</spage><epage>306</epage><pages>301-306</pages><issn>1534-5351</issn><eissn>2640-7574</eissn><isbn>9780769519029</isbn><isbn>0769519024</isbn><abstract>As the age of software systems increases they tend to deviate from their actual design and architecture. It becomes more and more difficult to manage and maintain such systems. We explore the idea of software clustering for reverse engineering and re-modularization. Clustering together software artifacts provides an automatic technique for discovering high level abstract entities within a system. Previous work on software clustering has identified many areas where further investigation is required. Clustering techniques should be tuned to the type of system they are being applied to. In this paper we explore a new clustering algorithm called the 'combined' algorithm which, as our experiments show, provides more promising results for software clustering than the previously used algorithms. We also analyze the behavior of correlation and distance metrics for binary features.</abstract><pub>IEEE</pub><doi>10.1109/CSMR.2003.1192438</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1534-5351
ispartof Seventh European Conference onSoftware Maintenance and Reengineering, 2003. Proceedings, 2003, p.301-306
issn 1534-5351
2640-7574
language eng
recordid cdi_ieee_primary_1192438
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Euclidean distance
Open source software
Partitioning algorithms
Software algorithms
Software maintenance
Software measurement
System testing
title Software clustering techniques and the use of combined algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Software%20clustering%20techniques%20and%20the%20use%20of%20combined%20algorithm&rft.btitle=Seventh%20European%20Conference%20onSoftware%20Maintenance%20and%20Reengineering,%202003.%20Proceedings&rft.au=Saeed,%20M.&rft.date=2003&rft.spage=301&rft.epage=306&rft.pages=301-306&rft.issn=1534-5351&rft.eissn=2640-7574&rft.isbn=9780769519029&rft.isbn_list=0769519024&rft_id=info:doi/10.1109/CSMR.2003.1192438&rft_dat=%3Cieee_6IE%3E1192438%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1192438&rfr_iscdi=true