Software clustering techniques and the use of combined algorithm
As the age of software systems increases they tend to deviate from their actual design and architecture. It becomes more and more difficult to manage and maintain such systems. We explore the idea of software clustering for reverse engineering and re-modularization. Clustering together software arti...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | |
container_start_page | 301 |
container_title | |
container_volume | |
creator | Saeed, M. Maqbool, O. Babri, H.A. Hassan, S.Z. Sarwar, S.M. |
description | As the age of software systems increases they tend to deviate from their actual design and architecture. It becomes more and more difficult to manage and maintain such systems. We explore the idea of software clustering for reverse engineering and re-modularization. Clustering together software artifacts provides an automatic technique for discovering high level abstract entities within a system. Previous work on software clustering has identified many areas where further investigation is required. Clustering techniques should be tuned to the type of system they are being applied to. In this paper we explore a new clustering algorithm called the 'combined' algorithm which, as our experiments show, provides more promising results for software clustering than the previously used algorithms. We also analyze the behavior of correlation and distance metrics for binary features. |
doi_str_mv | 10.1109/CSMR.2003.1192438 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1192438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1192438</ieee_id><sourcerecordid>1192438</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c4755820b8d36302f772e762cedd103320aef4fb067b1230c8609c80834c5d293</originalsourceid><addsrcrecordid>eNotj8tKxDAUQIMPcBznA8RNfqDjzTvZKcUXjAiOroc2uZlG-tCmRfx7BWd1OJsDh5BLBmvGwF2X2-fXNQcQf-q4FPaILLiWUBhl5DFZOWPBaKeYA-5OyIIpIQslFDsj5zl_AHCQDBbkZjvE6bsakfp2zhOOqd_TCX3Tp68ZM636QKcG6ZyRDpH6oatTj4FW7X4Y09R0F-Q0Vm3G1YFL8n5_91Y-FpuXh6fydlMkZtRUeGmUshxqG4QWwKMxHI3mHkNgIASHCqOMNWhTMy7AWw3OW7BCehW4E0ty9d9NiLj7HFNXjT-7w7z4BfB3SrI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Software clustering techniques and the use of combined algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Saeed, M. ; Maqbool, O. ; Babri, H.A. ; Hassan, S.Z. ; Sarwar, S.M.</creator><creatorcontrib>Saeed, M. ; Maqbool, O. ; Babri, H.A. ; Hassan, S.Z. ; Sarwar, S.M.</creatorcontrib><description>As the age of software systems increases they tend to deviate from their actual design and architecture. It becomes more and more difficult to manage and maintain such systems. We explore the idea of software clustering for reverse engineering and re-modularization. Clustering together software artifacts provides an automatic technique for discovering high level abstract entities within a system. Previous work on software clustering has identified many areas where further investigation is required. Clustering techniques should be tuned to the type of system they are being applied to. In this paper we explore a new clustering algorithm called the 'combined' algorithm which, as our experiments show, provides more promising results for software clustering than the previously used algorithms. We also analyze the behavior of correlation and distance metrics for binary features.</description><identifier>ISSN: 1534-5351</identifier><identifier>ISBN: 9780769519029</identifier><identifier>ISBN: 0769519024</identifier><identifier>EISSN: 2640-7574</identifier><identifier>DOI: 10.1109/CSMR.2003.1192438</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Euclidean distance ; Open source software ; Partitioning algorithms ; Software algorithms ; Software maintenance ; Software measurement ; System testing</subject><ispartof>Seventh European Conference onSoftware Maintenance and Reengineering, 2003. Proceedings, 2003, p.301-306</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1192438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1192438$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saeed, M.</creatorcontrib><creatorcontrib>Maqbool, O.</creatorcontrib><creatorcontrib>Babri, H.A.</creatorcontrib><creatorcontrib>Hassan, S.Z.</creatorcontrib><creatorcontrib>Sarwar, S.M.</creatorcontrib><title>Software clustering techniques and the use of combined algorithm</title><title>Seventh European Conference onSoftware Maintenance and Reengineering, 2003. Proceedings</title><addtitle>CSMR</addtitle><description>As the age of software systems increases they tend to deviate from their actual design and architecture. It becomes more and more difficult to manage and maintain such systems. We explore the idea of software clustering for reverse engineering and re-modularization. Clustering together software artifacts provides an automatic technique for discovering high level abstract entities within a system. Previous work on software clustering has identified many areas where further investigation is required. Clustering techniques should be tuned to the type of system they are being applied to. In this paper we explore a new clustering algorithm called the 'combined' algorithm which, as our experiments show, provides more promising results for software clustering than the previously used algorithms. We also analyze the behavior of correlation and distance metrics for binary features.</description><subject>Clustering algorithms</subject><subject>Euclidean distance</subject><subject>Open source software</subject><subject>Partitioning algorithms</subject><subject>Software algorithms</subject><subject>Software maintenance</subject><subject>Software measurement</subject><subject>System testing</subject><issn>1534-5351</issn><issn>2640-7574</issn><isbn>9780769519029</isbn><isbn>0769519024</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKxDAUQIMPcBznA8RNfqDjzTvZKcUXjAiOroc2uZlG-tCmRfx7BWd1OJsDh5BLBmvGwF2X2-fXNQcQf-q4FPaILLiWUBhl5DFZOWPBaKeYA-5OyIIpIQslFDsj5zl_AHCQDBbkZjvE6bsakfp2zhOOqd_TCX3Tp68ZM636QKcG6ZyRDpH6oatTj4FW7X4Y09R0F-Q0Vm3G1YFL8n5_91Y-FpuXh6fydlMkZtRUeGmUshxqG4QWwKMxHI3mHkNgIASHCqOMNWhTMy7AWw3OW7BCehW4E0ty9d9NiLj7HFNXjT-7w7z4BfB3SrI</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Saeed, M.</creator><creator>Maqbool, O.</creator><creator>Babri, H.A.</creator><creator>Hassan, S.Z.</creator><creator>Sarwar, S.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Software clustering techniques and the use of combined algorithm</title><author>Saeed, M. ; Maqbool, O. ; Babri, H.A. ; Hassan, S.Z. ; Sarwar, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c4755820b8d36302f772e762cedd103320aef4fb067b1230c8609c80834c5d293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Clustering algorithms</topic><topic>Euclidean distance</topic><topic>Open source software</topic><topic>Partitioning algorithms</topic><topic>Software algorithms</topic><topic>Software maintenance</topic><topic>Software measurement</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Saeed, M.</creatorcontrib><creatorcontrib>Maqbool, O.</creatorcontrib><creatorcontrib>Babri, H.A.</creatorcontrib><creatorcontrib>Hassan, S.Z.</creatorcontrib><creatorcontrib>Sarwar, S.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saeed, M.</au><au>Maqbool, O.</au><au>Babri, H.A.</au><au>Hassan, S.Z.</au><au>Sarwar, S.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Software clustering techniques and the use of combined algorithm</atitle><btitle>Seventh European Conference onSoftware Maintenance and Reengineering, 2003. Proceedings</btitle><stitle>CSMR</stitle><date>2003</date><risdate>2003</risdate><spage>301</spage><epage>306</epage><pages>301-306</pages><issn>1534-5351</issn><eissn>2640-7574</eissn><isbn>9780769519029</isbn><isbn>0769519024</isbn><abstract>As the age of software systems increases they tend to deviate from their actual design and architecture. It becomes more and more difficult to manage and maintain such systems. We explore the idea of software clustering for reverse engineering and re-modularization. Clustering together software artifacts provides an automatic technique for discovering high level abstract entities within a system. Previous work on software clustering has identified many areas where further investigation is required. Clustering techniques should be tuned to the type of system they are being applied to. In this paper we explore a new clustering algorithm called the 'combined' algorithm which, as our experiments show, provides more promising results for software clustering than the previously used algorithms. We also analyze the behavior of correlation and distance metrics for binary features.</abstract><pub>IEEE</pub><doi>10.1109/CSMR.2003.1192438</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1534-5351 |
ispartof | Seventh European Conference onSoftware Maintenance and Reengineering, 2003. Proceedings, 2003, p.301-306 |
issn | 1534-5351 2640-7574 |
language | eng |
recordid | cdi_ieee_primary_1192438 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clustering algorithms Euclidean distance Open source software Partitioning algorithms Software algorithms Software maintenance Software measurement System testing |
title | Software clustering techniques and the use of combined algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Software%20clustering%20techniques%20and%20the%20use%20of%20combined%20algorithm&rft.btitle=Seventh%20European%20Conference%20onSoftware%20Maintenance%20and%20Reengineering,%202003.%20Proceedings&rft.au=Saeed,%20M.&rft.date=2003&rft.spage=301&rft.epage=306&rft.pages=301-306&rft.issn=1534-5351&rft.eissn=2640-7574&rft.isbn=9780769519029&rft.isbn_list=0769519024&rft_id=info:doi/10.1109/CSMR.2003.1192438&rft_dat=%3Cieee_6IE%3E1192438%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1192438&rfr_iscdi=true |