Speech compression using discreet wavelet transform

Speech compression is a process of converting human speech signals into efficient encoded representations that can be decoded back to produce a close approximation of the original signals. The paper attempts to evaluate the wavelet compression technique on speech signals. Different wavelet filters w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Najih, A.M.M.A., bin Ramli, A.R., Prakash, V., Syed, A.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Najih, A.M.M.A.
bin Ramli, A.R.
Prakash, V.
Syed, A.R.
description Speech compression is a process of converting human speech signals into efficient encoded representations that can be decoded back to produce a close approximation of the original signals. The paper attempts to evaluate the wavelet compression technique on speech signals. Different wavelet filters were used to select the best filter suitable for speech signals in terms of providing low bit rate and low computational complexity. We applied five procedures: one-dimensional wavelet decomposition, thresholding, quantization, Huffman coding and reconstruction using several families of wavelet filters. Our implementation was evaluated based on PSNR, SNR, NRMSE (normalized root mean square error) and compression ratio and tested on 8 kHz 8-bit speech signals. The results of this study showed that the Db10 wavelet filter gives higher SNR and better speech quality than other filters and compression ratio up to 4.31 times with satisfactory quality of decoded speech signals. In other words, the bit rate of speech signals was reduced from 64 kbps to 13 kbps.
doi_str_mv 10.1109/NCTT.2003.1188289
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1188289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1188289</ieee_id><sourcerecordid>1188289</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-fdc22756428606517af5ddd723be91a793087817d47763e563f02336c4594af03</originalsourceid><addsrcrecordid>eNotj81KxDAURgMiqOM8gLjpC3S8yW1yk6UU_2DQhXU9xOZGI9Mfmqr49hZmzuZwNh98QlxJ2EgJ7ua5bpqNAsAlrVXWnYgLIAtIREhnYp3zFyygM9rAucDXkbn9LNqhGyfOOQ198Z1T_1GElNuJeS5-_Q_vF8-T73Mcpu5SnEa_z7w-eiXe7u-a-rHcvjw81bfbMknScxlDqxRpUylrwGhJPuoQAil8Zyc9OQRLVlKoiAyyNhhBIZq20q7yEXAlrg-7iZl345Q6P_3tjr_wH-rWQl4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Speech compression using discreet wavelet transform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Najih, A.M.M.A. ; bin Ramli, A.R. ; Prakash, V. ; Syed, A.R.</creator><creatorcontrib>Najih, A.M.M.A. ; bin Ramli, A.R. ; Prakash, V. ; Syed, A.R.</creatorcontrib><description>Speech compression is a process of converting human speech signals into efficient encoded representations that can be decoded back to produce a close approximation of the original signals. The paper attempts to evaluate the wavelet compression technique on speech signals. Different wavelet filters were used to select the best filter suitable for speech signals in terms of providing low bit rate and low computational complexity. We applied five procedures: one-dimensional wavelet decomposition, thresholding, quantization, Huffman coding and reconstruction using several families of wavelet filters. Our implementation was evaluated based on PSNR, SNR, NRMSE (normalized root mean square error) and compression ratio and tested on 8 kHz 8-bit speech signals. The results of this study showed that the Db10 wavelet filter gives higher SNR and better speech quality than other filters and compression ratio up to 4.31 times with satisfactory quality of decoded speech signals. In other words, the bit rate of speech signals was reduced from 64 kbps to 13 kbps.</description><identifier>ISBN: 0780377737</identifier><identifier>ISBN: 9780780377738</identifier><identifier>DOI: 10.1109/NCTT.2003.1188289</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit rate ; Computational complexity ; Decoding ; Filters ; Humans ; Quantization ; Signal processing ; Speech analysis ; Speech processing ; Wavelet transforms</subject><ispartof>4th National Conference of Telecommunication Technology, 2003. NCTT 2003 Proceedings, 2003, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1188289$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1188289$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Najih, A.M.M.A.</creatorcontrib><creatorcontrib>bin Ramli, A.R.</creatorcontrib><creatorcontrib>Prakash, V.</creatorcontrib><creatorcontrib>Syed, A.R.</creatorcontrib><title>Speech compression using discreet wavelet transform</title><title>4th National Conference of Telecommunication Technology, 2003. NCTT 2003 Proceedings</title><addtitle>NCTT</addtitle><description>Speech compression is a process of converting human speech signals into efficient encoded representations that can be decoded back to produce a close approximation of the original signals. The paper attempts to evaluate the wavelet compression technique on speech signals. Different wavelet filters were used to select the best filter suitable for speech signals in terms of providing low bit rate and low computational complexity. We applied five procedures: one-dimensional wavelet decomposition, thresholding, quantization, Huffman coding and reconstruction using several families of wavelet filters. Our implementation was evaluated based on PSNR, SNR, NRMSE (normalized root mean square error) and compression ratio and tested on 8 kHz 8-bit speech signals. The results of this study showed that the Db10 wavelet filter gives higher SNR and better speech quality than other filters and compression ratio up to 4.31 times with satisfactory quality of decoded speech signals. In other words, the bit rate of speech signals was reduced from 64 kbps to 13 kbps.</description><subject>Bit rate</subject><subject>Computational complexity</subject><subject>Decoding</subject><subject>Filters</subject><subject>Humans</subject><subject>Quantization</subject><subject>Signal processing</subject><subject>Speech analysis</subject><subject>Speech processing</subject><subject>Wavelet transforms</subject><isbn>0780377737</isbn><isbn>9780780377738</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAURgMiqOM8gLjpC3S8yW1yk6UU_2DQhXU9xOZGI9Mfmqr49hZmzuZwNh98QlxJ2EgJ7ua5bpqNAsAlrVXWnYgLIAtIREhnYp3zFyygM9rAucDXkbn9LNqhGyfOOQ198Z1T_1GElNuJeS5-_Q_vF8-T73Mcpu5SnEa_z7w-eiXe7u-a-rHcvjw81bfbMknScxlDqxRpUylrwGhJPuoQAil8Zyc9OQRLVlKoiAyyNhhBIZq20q7yEXAlrg-7iZl345Q6P_3tjr_wH-rWQl4</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Najih, A.M.M.A.</creator><creator>bin Ramli, A.R.</creator><creator>Prakash, V.</creator><creator>Syed, A.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Speech compression using discreet wavelet transform</title><author>Najih, A.M.M.A. ; bin Ramli, A.R. ; Prakash, V. ; Syed, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-fdc22756428606517af5ddd723be91a793087817d47763e563f02336c4594af03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bit rate</topic><topic>Computational complexity</topic><topic>Decoding</topic><topic>Filters</topic><topic>Humans</topic><topic>Quantization</topic><topic>Signal processing</topic><topic>Speech analysis</topic><topic>Speech processing</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Najih, A.M.M.A.</creatorcontrib><creatorcontrib>bin Ramli, A.R.</creatorcontrib><creatorcontrib>Prakash, V.</creatorcontrib><creatorcontrib>Syed, A.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Najih, A.M.M.A.</au><au>bin Ramli, A.R.</au><au>Prakash, V.</au><au>Syed, A.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Speech compression using discreet wavelet transform</atitle><btitle>4th National Conference of Telecommunication Technology, 2003. NCTT 2003 Proceedings</btitle><stitle>NCTT</stitle><date>2003</date><risdate>2003</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>0780377737</isbn><isbn>9780780377738</isbn><abstract>Speech compression is a process of converting human speech signals into efficient encoded representations that can be decoded back to produce a close approximation of the original signals. The paper attempts to evaluate the wavelet compression technique on speech signals. Different wavelet filters were used to select the best filter suitable for speech signals in terms of providing low bit rate and low computational complexity. We applied five procedures: one-dimensional wavelet decomposition, thresholding, quantization, Huffman coding and reconstruction using several families of wavelet filters. Our implementation was evaluated based on PSNR, SNR, NRMSE (normalized root mean square error) and compression ratio and tested on 8 kHz 8-bit speech signals. The results of this study showed that the Db10 wavelet filter gives higher SNR and better speech quality than other filters and compression ratio up to 4.31 times with satisfactory quality of decoded speech signals. In other words, the bit rate of speech signals was reduced from 64 kbps to 13 kbps.</abstract><pub>IEEE</pub><doi>10.1109/NCTT.2003.1188289</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780377737
ispartof 4th National Conference of Telecommunication Technology, 2003. NCTT 2003 Proceedings, 2003, p.1-4
issn
language eng
recordid cdi_ieee_primary_1188289
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bit rate
Computational complexity
Decoding
Filters
Humans
Quantization
Signal processing
Speech analysis
Speech processing
Wavelet transforms
title Speech compression using discreet wavelet transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Speech%20compression%20using%20discreet%20wavelet%20transform&rft.btitle=4th%20National%20Conference%20of%20Telecommunication%20Technology,%202003.%20NCTT%202003%20Proceedings&rft.au=Najih,%20A.M.M.A.&rft.date=2003&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=0780377737&rft.isbn_list=9780780377738&rft_id=info:doi/10.1109/NCTT.2003.1188289&rft_dat=%3Cieee_6IE%3E1188289%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1188289&rfr_iscdi=true