Speech compression using discreet wavelet transform
Speech compression is a process of converting human speech signals into efficient encoded representations that can be decoded back to produce a close approximation of the original signals. The paper attempts to evaluate the wavelet compression technique on speech signals. Different wavelet filters w...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Najih, A.M.M.A. bin Ramli, A.R. Prakash, V. Syed, A.R. |
description | Speech compression is a process of converting human speech signals into efficient encoded representations that can be decoded back to produce a close approximation of the original signals. The paper attempts to evaluate the wavelet compression technique on speech signals. Different wavelet filters were used to select the best filter suitable for speech signals in terms of providing low bit rate and low computational complexity. We applied five procedures: one-dimensional wavelet decomposition, thresholding, quantization, Huffman coding and reconstruction using several families of wavelet filters. Our implementation was evaluated based on PSNR, SNR, NRMSE (normalized root mean square error) and compression ratio and tested on 8 kHz 8-bit speech signals. The results of this study showed that the Db10 wavelet filter gives higher SNR and better speech quality than other filters and compression ratio up to 4.31 times with satisfactory quality of decoded speech signals. In other words, the bit rate of speech signals was reduced from 64 kbps to 13 kbps. |
doi_str_mv | 10.1109/NCTT.2003.1188289 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1188289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1188289</ieee_id><sourcerecordid>1188289</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-fdc22756428606517af5ddd723be91a793087817d47763e563f02336c4594af03</originalsourceid><addsrcrecordid>eNotj81KxDAURgMiqOM8gLjpC3S8yW1yk6UU_2DQhXU9xOZGI9Mfmqr49hZmzuZwNh98QlxJ2EgJ7ua5bpqNAsAlrVXWnYgLIAtIREhnYp3zFyygM9rAucDXkbn9LNqhGyfOOQ198Z1T_1GElNuJeS5-_Q_vF8-T73Mcpu5SnEa_z7w-eiXe7u-a-rHcvjw81bfbMknScxlDqxRpUylrwGhJPuoQAil8Zyc9OQRLVlKoiAyyNhhBIZq20q7yEXAlrg-7iZl345Q6P_3tjr_wH-rWQl4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Speech compression using discreet wavelet transform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Najih, A.M.M.A. ; bin Ramli, A.R. ; Prakash, V. ; Syed, A.R.</creator><creatorcontrib>Najih, A.M.M.A. ; bin Ramli, A.R. ; Prakash, V. ; Syed, A.R.</creatorcontrib><description>Speech compression is a process of converting human speech signals into efficient encoded representations that can be decoded back to produce a close approximation of the original signals. The paper attempts to evaluate the wavelet compression technique on speech signals. Different wavelet filters were used to select the best filter suitable for speech signals in terms of providing low bit rate and low computational complexity. We applied five procedures: one-dimensional wavelet decomposition, thresholding, quantization, Huffman coding and reconstruction using several families of wavelet filters. Our implementation was evaluated based on PSNR, SNR, NRMSE (normalized root mean square error) and compression ratio and tested on 8 kHz 8-bit speech signals. The results of this study showed that the Db10 wavelet filter gives higher SNR and better speech quality than other filters and compression ratio up to 4.31 times with satisfactory quality of decoded speech signals. In other words, the bit rate of speech signals was reduced from 64 kbps to 13 kbps.</description><identifier>ISBN: 0780377737</identifier><identifier>ISBN: 9780780377738</identifier><identifier>DOI: 10.1109/NCTT.2003.1188289</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit rate ; Computational complexity ; Decoding ; Filters ; Humans ; Quantization ; Signal processing ; Speech analysis ; Speech processing ; Wavelet transforms</subject><ispartof>4th National Conference of Telecommunication Technology, 2003. NCTT 2003 Proceedings, 2003, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1188289$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1188289$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Najih, A.M.M.A.</creatorcontrib><creatorcontrib>bin Ramli, A.R.</creatorcontrib><creatorcontrib>Prakash, V.</creatorcontrib><creatorcontrib>Syed, A.R.</creatorcontrib><title>Speech compression using discreet wavelet transform</title><title>4th National Conference of Telecommunication Technology, 2003. NCTT 2003 Proceedings</title><addtitle>NCTT</addtitle><description>Speech compression is a process of converting human speech signals into efficient encoded representations that can be decoded back to produce a close approximation of the original signals. The paper attempts to evaluate the wavelet compression technique on speech signals. Different wavelet filters were used to select the best filter suitable for speech signals in terms of providing low bit rate and low computational complexity. We applied five procedures: one-dimensional wavelet decomposition, thresholding, quantization, Huffman coding and reconstruction using several families of wavelet filters. Our implementation was evaluated based on PSNR, SNR, NRMSE (normalized root mean square error) and compression ratio and tested on 8 kHz 8-bit speech signals. The results of this study showed that the Db10 wavelet filter gives higher SNR and better speech quality than other filters and compression ratio up to 4.31 times with satisfactory quality of decoded speech signals. In other words, the bit rate of speech signals was reduced from 64 kbps to 13 kbps.</description><subject>Bit rate</subject><subject>Computational complexity</subject><subject>Decoding</subject><subject>Filters</subject><subject>Humans</subject><subject>Quantization</subject><subject>Signal processing</subject><subject>Speech analysis</subject><subject>Speech processing</subject><subject>Wavelet transforms</subject><isbn>0780377737</isbn><isbn>9780780377738</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAURgMiqOM8gLjpC3S8yW1yk6UU_2DQhXU9xOZGI9Mfmqr49hZmzuZwNh98QlxJ2EgJ7ua5bpqNAsAlrVXWnYgLIAtIREhnYp3zFyygM9rAucDXkbn9LNqhGyfOOQ198Z1T_1GElNuJeS5-_Q_vF8-T73Mcpu5SnEa_z7w-eiXe7u-a-rHcvjw81bfbMknScxlDqxRpUylrwGhJPuoQAil8Zyc9OQRLVlKoiAyyNhhBIZq20q7yEXAlrg-7iZl345Q6P_3tjr_wH-rWQl4</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Najih, A.M.M.A.</creator><creator>bin Ramli, A.R.</creator><creator>Prakash, V.</creator><creator>Syed, A.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Speech compression using discreet wavelet transform</title><author>Najih, A.M.M.A. ; bin Ramli, A.R. ; Prakash, V. ; Syed, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-fdc22756428606517af5ddd723be91a793087817d47763e563f02336c4594af03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bit rate</topic><topic>Computational complexity</topic><topic>Decoding</topic><topic>Filters</topic><topic>Humans</topic><topic>Quantization</topic><topic>Signal processing</topic><topic>Speech analysis</topic><topic>Speech processing</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Najih, A.M.M.A.</creatorcontrib><creatorcontrib>bin Ramli, A.R.</creatorcontrib><creatorcontrib>Prakash, V.</creatorcontrib><creatorcontrib>Syed, A.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Najih, A.M.M.A.</au><au>bin Ramli, A.R.</au><au>Prakash, V.</au><au>Syed, A.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Speech compression using discreet wavelet transform</atitle><btitle>4th National Conference of Telecommunication Technology, 2003. NCTT 2003 Proceedings</btitle><stitle>NCTT</stitle><date>2003</date><risdate>2003</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>0780377737</isbn><isbn>9780780377738</isbn><abstract>Speech compression is a process of converting human speech signals into efficient encoded representations that can be decoded back to produce a close approximation of the original signals. The paper attempts to evaluate the wavelet compression technique on speech signals. Different wavelet filters were used to select the best filter suitable for speech signals in terms of providing low bit rate and low computational complexity. We applied five procedures: one-dimensional wavelet decomposition, thresholding, quantization, Huffman coding and reconstruction using several families of wavelet filters. Our implementation was evaluated based on PSNR, SNR, NRMSE (normalized root mean square error) and compression ratio and tested on 8 kHz 8-bit speech signals. The results of this study showed that the Db10 wavelet filter gives higher SNR and better speech quality than other filters and compression ratio up to 4.31 times with satisfactory quality of decoded speech signals. In other words, the bit rate of speech signals was reduced from 64 kbps to 13 kbps.</abstract><pub>IEEE</pub><doi>10.1109/NCTT.2003.1188289</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780377737 |
ispartof | 4th National Conference of Telecommunication Technology, 2003. NCTT 2003 Proceedings, 2003, p.1-4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1188289 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bit rate Computational complexity Decoding Filters Humans Quantization Signal processing Speech analysis Speech processing Wavelet transforms |
title | Speech compression using discreet wavelet transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Speech%20compression%20using%20discreet%20wavelet%20transform&rft.btitle=4th%20National%20Conference%20of%20Telecommunication%20Technology,%202003.%20NCTT%202003%20Proceedings&rft.au=Najih,%20A.M.M.A.&rft.date=2003&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=0780377737&rft.isbn_list=9780780377738&rft_id=info:doi/10.1109/NCTT.2003.1188289&rft_dat=%3Cieee_6IE%3E1188289%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1188289&rfr_iscdi=true |