Frequency-independent equivalent-circuit model for on-chip spiral inductors
A wide-band physical and scalable 2-/spl Pi/ equivalent circuit model for on-chip spiral inductors is developed. Based on physical derivation and circuit theory, closed-form formulas are generated to calculate the RLC circuit elements directly from the inductor layout. The 2-/spl Pi/ model accuratel...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2003-03, Vol.38 (3), p.419-426 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 426 |
---|---|
container_issue | 3 |
container_start_page | 419 |
container_title | IEEE journal of solid-state circuits |
container_volume | 38 |
creator | Yu Cao Groves, R.A. Xuejue Huang Zamdmer, N.D. Plouchart, J.-O. Wachnik, R.A. Tsu-Jae King Chenming Hu |
description | A wide-band physical and scalable 2-/spl Pi/ equivalent circuit model for on-chip spiral inductors is developed. Based on physical derivation and circuit theory, closed-form formulas are generated to calculate the RLC circuit elements directly from the inductor layout. The 2-/spl Pi/ model accurately captures R(f) and L(f) characteristics beyond the self-resonant frequency. Using frequency-independent RLC elements, this new model is fully compatible with both ac and transient analysis. Verification with measurement data from a SiGe process demonstrates accurate performance prediction and excellent scalability for a wide range of inductor configurations. |
doi_str_mv | 10.1109/JSSC.2002.808285 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1183848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1183848</ieee_id><sourcerecordid>1671290660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-db047667a191e1b8d4a15abb0b8294ae497eae697cc4d45167082d1b1861aa963</originalsourceid><addsrcrecordid>eNp9kc9LwzAUx4MoOKd3wUvxIF4y89I0TY4ynL8GHqbgLaRphhldU5NW2H9vygTBg5e8vLzP90seX4TOgcwAiLx5Wq3mM0oInQkiqCgO0ASKQmAo8_dDNCEEBJZpfoxOYtykljEBE_S8CPZzsK3ZYdfWtrPpaPssvbkv3aQrNi6YwfXZ1te2ydY-ZL7F5sN1Wexc0E2WdIPpfYin6Gitm2jPfuoUvS3uXucPePly_zi_XWKTS9njuiKs5LzUIMFCJWqmodBVRSpBJdOWydJqy2VpDKtZAbxMC9VQgeCgteT5FF3tfbvg099jr7YuGts0urV-iIqKnBDGRvD6XzBZA5WEc5LQyz_oxg-hTWsoSSkvWA6jH9lDJvgYg12rLritDjsFRI0pqDEFNaag9ikkycVe4qy1vziIXDCRfwMpjYLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922654316</pqid></control><display><type>article</type><title>Frequency-independent equivalent-circuit model for on-chip spiral inductors</title><source>IEEE Electronic Library (IEL)</source><creator>Yu Cao ; Groves, R.A. ; Xuejue Huang ; Zamdmer, N.D. ; Plouchart, J.-O. ; Wachnik, R.A. ; Tsu-Jae King ; Chenming Hu</creator><creatorcontrib>Yu Cao ; Groves, R.A. ; Xuejue Huang ; Zamdmer, N.D. ; Plouchart, J.-O. ; Wachnik, R.A. ; Tsu-Jae King ; Chenming Hu</creatorcontrib><description>A wide-band physical and scalable 2-/spl Pi/ equivalent circuit model for on-chip spiral inductors is developed. Based on physical derivation and circuit theory, closed-form formulas are generated to calculate the RLC circuit elements directly from the inductor layout. The 2-/spl Pi/ model accurately captures R(f) and L(f) characteristics beyond the self-resonant frequency. Using frequency-independent RLC elements, this new model is fully compatible with both ac and transient analysis. Verification with measurement data from a SiGe process demonstrates accurate performance prediction and excellent scalability for a wide range of inductor configurations.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2002.808285</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit theory ; Circuits ; Derivation ; Equivalence ; Equivalent circuits ; Frequency ; Germanium silicon alloys ; Inductors ; Mathematical analysis ; Mathematical models ; RLC circuits ; Silicon germanides ; Silicon germanium ; Spirals ; Transient analysis ; Wideband</subject><ispartof>IEEE journal of solid-state circuits, 2003-03, Vol.38 (3), p.419-426</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-db047667a191e1b8d4a15abb0b8294ae497eae697cc4d45167082d1b1861aa963</citedby><cites>FETCH-LOGICAL-c399t-db047667a191e1b8d4a15abb0b8294ae497eae697cc4d45167082d1b1861aa963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1183848$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1183848$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu Cao</creatorcontrib><creatorcontrib>Groves, R.A.</creatorcontrib><creatorcontrib>Xuejue Huang</creatorcontrib><creatorcontrib>Zamdmer, N.D.</creatorcontrib><creatorcontrib>Plouchart, J.-O.</creatorcontrib><creatorcontrib>Wachnik, R.A.</creatorcontrib><creatorcontrib>Tsu-Jae King</creatorcontrib><creatorcontrib>Chenming Hu</creatorcontrib><title>Frequency-independent equivalent-circuit model for on-chip spiral inductors</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>A wide-band physical and scalable 2-/spl Pi/ equivalent circuit model for on-chip spiral inductors is developed. Based on physical derivation and circuit theory, closed-form formulas are generated to calculate the RLC circuit elements directly from the inductor layout. The 2-/spl Pi/ model accurately captures R(f) and L(f) characteristics beyond the self-resonant frequency. Using frequency-independent RLC elements, this new model is fully compatible with both ac and transient analysis. Verification with measurement data from a SiGe process demonstrates accurate performance prediction and excellent scalability for a wide range of inductor configurations.</description><subject>Circuit theory</subject><subject>Circuits</subject><subject>Derivation</subject><subject>Equivalence</subject><subject>Equivalent circuits</subject><subject>Frequency</subject><subject>Germanium silicon alloys</subject><subject>Inductors</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>RLC circuits</subject><subject>Silicon germanides</subject><subject>Silicon germanium</subject><subject>Spirals</subject><subject>Transient analysis</subject><subject>Wideband</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc9LwzAUx4MoOKd3wUvxIF4y89I0TY4ynL8GHqbgLaRphhldU5NW2H9vygTBg5e8vLzP90seX4TOgcwAiLx5Wq3mM0oInQkiqCgO0ASKQmAo8_dDNCEEBJZpfoxOYtykljEBE_S8CPZzsK3ZYdfWtrPpaPssvbkv3aQrNi6YwfXZ1te2ydY-ZL7F5sN1Wexc0E2WdIPpfYin6Gitm2jPfuoUvS3uXucPePly_zi_XWKTS9njuiKs5LzUIMFCJWqmodBVRSpBJdOWydJqy2VpDKtZAbxMC9VQgeCgteT5FF3tfbvg099jr7YuGts0urV-iIqKnBDGRvD6XzBZA5WEc5LQyz_oxg-hTWsoSSkvWA6jH9lDJvgYg12rLritDjsFRI0pqDEFNaag9ikkycVe4qy1vziIXDCRfwMpjYLY</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Yu Cao</creator><creator>Groves, R.A.</creator><creator>Xuejue Huang</creator><creator>Zamdmer, N.D.</creator><creator>Plouchart, J.-O.</creator><creator>Wachnik, R.A.</creator><creator>Tsu-Jae King</creator><creator>Chenming Hu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030301</creationdate><title>Frequency-independent equivalent-circuit model for on-chip spiral inductors</title><author>Yu Cao ; Groves, R.A. ; Xuejue Huang ; Zamdmer, N.D. ; Plouchart, J.-O. ; Wachnik, R.A. ; Tsu-Jae King ; Chenming Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-db047667a191e1b8d4a15abb0b8294ae497eae697cc4d45167082d1b1861aa963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Circuit theory</topic><topic>Circuits</topic><topic>Derivation</topic><topic>Equivalence</topic><topic>Equivalent circuits</topic><topic>Frequency</topic><topic>Germanium silicon alloys</topic><topic>Inductors</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>RLC circuits</topic><topic>Silicon germanides</topic><topic>Silicon germanium</topic><topic>Spirals</topic><topic>Transient analysis</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu Cao</creatorcontrib><creatorcontrib>Groves, R.A.</creatorcontrib><creatorcontrib>Xuejue Huang</creatorcontrib><creatorcontrib>Zamdmer, N.D.</creatorcontrib><creatorcontrib>Plouchart, J.-O.</creatorcontrib><creatorcontrib>Wachnik, R.A.</creatorcontrib><creatorcontrib>Tsu-Jae King</creatorcontrib><creatorcontrib>Chenming Hu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu Cao</au><au>Groves, R.A.</au><au>Xuejue Huang</au><au>Zamdmer, N.D.</au><au>Plouchart, J.-O.</au><au>Wachnik, R.A.</au><au>Tsu-Jae King</au><au>Chenming Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-independent equivalent-circuit model for on-chip spiral inductors</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2003-03-01</date><risdate>2003</risdate><volume>38</volume><issue>3</issue><spage>419</spage><epage>426</epage><pages>419-426</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>A wide-band physical and scalable 2-/spl Pi/ equivalent circuit model for on-chip spiral inductors is developed. Based on physical derivation and circuit theory, closed-form formulas are generated to calculate the RLC circuit elements directly from the inductor layout. The 2-/spl Pi/ model accurately captures R(f) and L(f) characteristics beyond the self-resonant frequency. Using frequency-independent RLC elements, this new model is fully compatible with both ac and transient analysis. Verification with measurement data from a SiGe process demonstrates accurate performance prediction and excellent scalability for a wide range of inductor configurations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2002.808285</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2003-03, Vol.38 (3), p.419-426 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_ieee_primary_1183848 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit theory Circuits Derivation Equivalence Equivalent circuits Frequency Germanium silicon alloys Inductors Mathematical analysis Mathematical models RLC circuits Silicon germanides Silicon germanium Spirals Transient analysis Wideband |
title | Frequency-independent equivalent-circuit model for on-chip spiral inductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T21%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-independent%20equivalent-circuit%20model%20for%20on-chip%20spiral%20inductors&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Yu%20Cao&rft.date=2003-03-01&rft.volume=38&rft.issue=3&rft.spage=419&rft.epage=426&rft.pages=419-426&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2002.808285&rft_dat=%3Cproquest_RIE%3E1671290660%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922654316&rft_id=info:pmid/&rft_ieee_id=1183848&rfr_iscdi=true |