Frequency-independent equivalent-circuit model for on-chip spiral inductors

A wide-band physical and scalable 2-/spl Pi/ equivalent circuit model for on-chip spiral inductors is developed. Based on physical derivation and circuit theory, closed-form formulas are generated to calculate the RLC circuit elements directly from the inductor layout. The 2-/spl Pi/ model accuratel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2003-03, Vol.38 (3), p.419-426
Hauptverfasser: Yu Cao, Groves, R.A., Xuejue Huang, Zamdmer, N.D., Plouchart, J.-O., Wachnik, R.A., Tsu-Jae King, Chenming Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue 3
container_start_page 419
container_title IEEE journal of solid-state circuits
container_volume 38
creator Yu Cao
Groves, R.A.
Xuejue Huang
Zamdmer, N.D.
Plouchart, J.-O.
Wachnik, R.A.
Tsu-Jae King
Chenming Hu
description A wide-band physical and scalable 2-/spl Pi/ equivalent circuit model for on-chip spiral inductors is developed. Based on physical derivation and circuit theory, closed-form formulas are generated to calculate the RLC circuit elements directly from the inductor layout. The 2-/spl Pi/ model accurately captures R(f) and L(f) characteristics beyond the self-resonant frequency. Using frequency-independent RLC elements, this new model is fully compatible with both ac and transient analysis. Verification with measurement data from a SiGe process demonstrates accurate performance prediction and excellent scalability for a wide range of inductor configurations.
doi_str_mv 10.1109/JSSC.2002.808285
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1183848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1183848</ieee_id><sourcerecordid>1671290660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-db047667a191e1b8d4a15abb0b8294ae497eae697cc4d45167082d1b1861aa963</originalsourceid><addsrcrecordid>eNp9kc9LwzAUx4MoOKd3wUvxIF4y89I0TY4ynL8GHqbgLaRphhldU5NW2H9vygTBg5e8vLzP90seX4TOgcwAiLx5Wq3mM0oInQkiqCgO0ASKQmAo8_dDNCEEBJZpfoxOYtykljEBE_S8CPZzsK3ZYdfWtrPpaPssvbkv3aQrNi6YwfXZ1te2ydY-ZL7F5sN1Wexc0E2WdIPpfYin6Gitm2jPfuoUvS3uXucPePly_zi_XWKTS9njuiKs5LzUIMFCJWqmodBVRSpBJdOWydJqy2VpDKtZAbxMC9VQgeCgteT5FF3tfbvg099jr7YuGts0urV-iIqKnBDGRvD6XzBZA5WEc5LQyz_oxg-hTWsoSSkvWA6jH9lDJvgYg12rLritDjsFRI0pqDEFNaag9ikkycVe4qy1vziIXDCRfwMpjYLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922654316</pqid></control><display><type>article</type><title>Frequency-independent equivalent-circuit model for on-chip spiral inductors</title><source>IEEE Electronic Library (IEL)</source><creator>Yu Cao ; Groves, R.A. ; Xuejue Huang ; Zamdmer, N.D. ; Plouchart, J.-O. ; Wachnik, R.A. ; Tsu-Jae King ; Chenming Hu</creator><creatorcontrib>Yu Cao ; Groves, R.A. ; Xuejue Huang ; Zamdmer, N.D. ; Plouchart, J.-O. ; Wachnik, R.A. ; Tsu-Jae King ; Chenming Hu</creatorcontrib><description>A wide-band physical and scalable 2-/spl Pi/ equivalent circuit model for on-chip spiral inductors is developed. Based on physical derivation and circuit theory, closed-form formulas are generated to calculate the RLC circuit elements directly from the inductor layout. The 2-/spl Pi/ model accurately captures R(f) and L(f) characteristics beyond the self-resonant frequency. Using frequency-independent RLC elements, this new model is fully compatible with both ac and transient analysis. Verification with measurement data from a SiGe process demonstrates accurate performance prediction and excellent scalability for a wide range of inductor configurations.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2002.808285</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit theory ; Circuits ; Derivation ; Equivalence ; Equivalent circuits ; Frequency ; Germanium silicon alloys ; Inductors ; Mathematical analysis ; Mathematical models ; RLC circuits ; Silicon germanides ; Silicon germanium ; Spirals ; Transient analysis ; Wideband</subject><ispartof>IEEE journal of solid-state circuits, 2003-03, Vol.38 (3), p.419-426</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-db047667a191e1b8d4a15abb0b8294ae497eae697cc4d45167082d1b1861aa963</citedby><cites>FETCH-LOGICAL-c399t-db047667a191e1b8d4a15abb0b8294ae497eae697cc4d45167082d1b1861aa963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1183848$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1183848$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu Cao</creatorcontrib><creatorcontrib>Groves, R.A.</creatorcontrib><creatorcontrib>Xuejue Huang</creatorcontrib><creatorcontrib>Zamdmer, N.D.</creatorcontrib><creatorcontrib>Plouchart, J.-O.</creatorcontrib><creatorcontrib>Wachnik, R.A.</creatorcontrib><creatorcontrib>Tsu-Jae King</creatorcontrib><creatorcontrib>Chenming Hu</creatorcontrib><title>Frequency-independent equivalent-circuit model for on-chip spiral inductors</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>A wide-band physical and scalable 2-/spl Pi/ equivalent circuit model for on-chip spiral inductors is developed. Based on physical derivation and circuit theory, closed-form formulas are generated to calculate the RLC circuit elements directly from the inductor layout. The 2-/spl Pi/ model accurately captures R(f) and L(f) characteristics beyond the self-resonant frequency. Using frequency-independent RLC elements, this new model is fully compatible with both ac and transient analysis. Verification with measurement data from a SiGe process demonstrates accurate performance prediction and excellent scalability for a wide range of inductor configurations.</description><subject>Circuit theory</subject><subject>Circuits</subject><subject>Derivation</subject><subject>Equivalence</subject><subject>Equivalent circuits</subject><subject>Frequency</subject><subject>Germanium silicon alloys</subject><subject>Inductors</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>RLC circuits</subject><subject>Silicon germanides</subject><subject>Silicon germanium</subject><subject>Spirals</subject><subject>Transient analysis</subject><subject>Wideband</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc9LwzAUx4MoOKd3wUvxIF4y89I0TY4ynL8GHqbgLaRphhldU5NW2H9vygTBg5e8vLzP90seX4TOgcwAiLx5Wq3mM0oInQkiqCgO0ASKQmAo8_dDNCEEBJZpfoxOYtykljEBE_S8CPZzsK3ZYdfWtrPpaPssvbkv3aQrNi6YwfXZ1te2ydY-ZL7F5sN1Wexc0E2WdIPpfYin6Gitm2jPfuoUvS3uXucPePly_zi_XWKTS9njuiKs5LzUIMFCJWqmodBVRSpBJdOWydJqy2VpDKtZAbxMC9VQgeCgteT5FF3tfbvg099jr7YuGts0urV-iIqKnBDGRvD6XzBZA5WEc5LQyz_oxg-hTWsoSSkvWA6jH9lDJvgYg12rLritDjsFRI0pqDEFNaag9ikkycVe4qy1vziIXDCRfwMpjYLY</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Yu Cao</creator><creator>Groves, R.A.</creator><creator>Xuejue Huang</creator><creator>Zamdmer, N.D.</creator><creator>Plouchart, J.-O.</creator><creator>Wachnik, R.A.</creator><creator>Tsu-Jae King</creator><creator>Chenming Hu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030301</creationdate><title>Frequency-independent equivalent-circuit model for on-chip spiral inductors</title><author>Yu Cao ; Groves, R.A. ; Xuejue Huang ; Zamdmer, N.D. ; Plouchart, J.-O. ; Wachnik, R.A. ; Tsu-Jae King ; Chenming Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-db047667a191e1b8d4a15abb0b8294ae497eae697cc4d45167082d1b1861aa963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Circuit theory</topic><topic>Circuits</topic><topic>Derivation</topic><topic>Equivalence</topic><topic>Equivalent circuits</topic><topic>Frequency</topic><topic>Germanium silicon alloys</topic><topic>Inductors</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>RLC circuits</topic><topic>Silicon germanides</topic><topic>Silicon germanium</topic><topic>Spirals</topic><topic>Transient analysis</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu Cao</creatorcontrib><creatorcontrib>Groves, R.A.</creatorcontrib><creatorcontrib>Xuejue Huang</creatorcontrib><creatorcontrib>Zamdmer, N.D.</creatorcontrib><creatorcontrib>Plouchart, J.-O.</creatorcontrib><creatorcontrib>Wachnik, R.A.</creatorcontrib><creatorcontrib>Tsu-Jae King</creatorcontrib><creatorcontrib>Chenming Hu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu Cao</au><au>Groves, R.A.</au><au>Xuejue Huang</au><au>Zamdmer, N.D.</au><au>Plouchart, J.-O.</au><au>Wachnik, R.A.</au><au>Tsu-Jae King</au><au>Chenming Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-independent equivalent-circuit model for on-chip spiral inductors</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2003-03-01</date><risdate>2003</risdate><volume>38</volume><issue>3</issue><spage>419</spage><epage>426</epage><pages>419-426</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>A wide-band physical and scalable 2-/spl Pi/ equivalent circuit model for on-chip spiral inductors is developed. Based on physical derivation and circuit theory, closed-form formulas are generated to calculate the RLC circuit elements directly from the inductor layout. The 2-/spl Pi/ model accurately captures R(f) and L(f) characteristics beyond the self-resonant frequency. Using frequency-independent RLC elements, this new model is fully compatible with both ac and transient analysis. Verification with measurement data from a SiGe process demonstrates accurate performance prediction and excellent scalability for a wide range of inductor configurations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2002.808285</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2003-03, Vol.38 (3), p.419-426
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_1183848
source IEEE Electronic Library (IEL)
subjects Circuit theory
Circuits
Derivation
Equivalence
Equivalent circuits
Frequency
Germanium silicon alloys
Inductors
Mathematical analysis
Mathematical models
RLC circuits
Silicon germanides
Silicon germanium
Spirals
Transient analysis
Wideband
title Frequency-independent equivalent-circuit model for on-chip spiral inductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T21%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-independent%20equivalent-circuit%20model%20for%20on-chip%20spiral%20inductors&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Yu%20Cao&rft.date=2003-03-01&rft.volume=38&rft.issue=3&rft.spage=419&rft.epage=426&rft.pages=419-426&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2002.808285&rft_dat=%3Cproquest_RIE%3E1671290660%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922654316&rft_id=info:pmid/&rft_ieee_id=1183848&rfr_iscdi=true