Matched affine joint subspace detection in remote hyperspectral reconnaissance
The GLR (generalized likelihood ratio) test has been invoked for several decades as a prescription for generating target detection algorithms, when limited prior knowledge makes a theoretically ideal test inapplicable. Many popular HSI (hyperspectral imaging) detection algorithms rely ultimately on...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The GLR (generalized likelihood ratio) test has been invoked for several decades as a prescription for generating target detection algorithms, when limited prior knowledge makes a theoretically ideal test inapplicable. Many popular HSI (hyperspectral imaging) detection algorithms rely ultimately on a GLR justification. However, experience with real-time remotely deployed detection systems indicates that certain heuristic modifications to the classic algorithm suite consistently produce better performance. A new target detection test, based on a Bayesian likelihood ratio (BLR) principle, has been used to explain these results and to define a broader class of detection algorithms. The more general approach facilitates the incorporation of prior beliefs, such as that gleaned from experience in measurement programs. A BLR test has been used to generate a new family of HSI algorithms, called matched affine joint subspace detection (MAJSD). Several examples from this class are described, and their utility is validated by detection comparisons. |
---|---|
DOI: | 10.1109/AIPR.2002.1182249 |