Online and incremental mining of separately-grouped Web access logs

The rising popularity of electronic commerce makes data mining an indispensable technology for business competitiveness. The World Wide Web provides abundant raw data in the form of Web access logs, Web transaction logs and Web user profiles. Without data mining tools, it is impossible to make any s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yew-Kwong Woon, Wee-Keong Ng, Ee-Peng Lim
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue
container_start_page 53
container_title
container_volume
creator Yew-Kwong Woon
Wee-Keong Ng
Ee-Peng Lim
description The rising popularity of electronic commerce makes data mining an indispensable technology for business competitiveness. The World Wide Web provides abundant raw data in the form of Web access logs, Web transaction logs and Web user profiles. Without data mining tools, it is impossible to make any sense of such massive data. We focus on Web usage mining because it deals most appropriately with understanding user behavioral patterns which is the key to successful customer relationship management. Previous work dealt separately with specific issues of Web usage mining and made assumptions without taking a holistic view and thus, had limited practical applicability. We formulate a novel and more holistic version of Web usage mining termed transactionized logfile mining (TRALOM) to effectively and correctly identify transactions as well as to mine useful knowledge from Web access logs. We also introduce a new data structure, called the WebTrie, to efficiently hold useful preprocessed data so that TRALOM can be done in an online and incremental fashion. Experiments conducted on real Web server logs verify the usefulness and practicality of our proposed techniques.
doi_str_mv 10.1109/WISE.2002.1181643
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1181643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1181643</ieee_id><sourcerecordid>1181643</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3527e9e480952d56ab7ac0904b496a1c708370b2cc3cc269c37ee88a3a0a32983</originalsourceid><addsrcrecordid>eNotj81Kw0AURgdEUGoeQNzMC6Temcn8LSVULRS6qNJluZnchpFkEjJx0be3YL_N4WwOfIw9C1gLAf71uD1s1hJAXtUJU6k7VnjrwBqvhTXGPrAi5x-4rtLCCPHI6n3qYyKOqeUxhZkGSgv2fIgppo6PZ55pwhkX6i9lN4-_E7X8SA3HEChn3o9dfmL3Z-wzFTeu2Pf75qv-LHf7j239tiujsHoplZaWPFUOvJatNthYDOChaipvUAQLTlloZAgqBGl8UJbIOVQIqKR3asVe_ruRiE7THAecL6fbVfUHaZNIzw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Online and incremental mining of separately-grouped Web access logs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yew-Kwong Woon ; Wee-Keong Ng ; Ee-Peng Lim</creator><creatorcontrib>Yew-Kwong Woon ; Wee-Keong Ng ; Ee-Peng Lim</creatorcontrib><description>The rising popularity of electronic commerce makes data mining an indispensable technology for business competitiveness. The World Wide Web provides abundant raw data in the form of Web access logs, Web transaction logs and Web user profiles. Without data mining tools, it is impossible to make any sense of such massive data. We focus on Web usage mining because it deals most appropriately with understanding user behavioral patterns which is the key to successful customer relationship management. Previous work dealt separately with specific issues of Web usage mining and made assumptions without taking a holistic view and thus, had limited practical applicability. We formulate a novel and more holistic version of Web usage mining termed transactionized logfile mining (TRALOM) to effectively and correctly identify transactions as well as to mine useful knowledge from Web access logs. We also introduce a new data structure, called the WebTrie, to efficiently hold useful preprocessed data so that TRALOM can be done in an online and incremental fashion. Experiments conducted on real Web server logs verify the usefulness and practicality of our proposed techniques.</description><identifier>ISBN: 9780769517667</identifier><identifier>ISBN: 0769517668</identifier><identifier>DOI: 10.1109/WISE.2002.1181643</identifier><language>eng</language><publisher>IEEE</publisher><subject>Customer relationship management ; Data analysis ; Data mining ; Data structures ; Electronic commerce ; Information analysis ; Inspection ; Web mining ; Web server ; Web sites</subject><ispartof>Proceedings of the Third International Conference on Web Information Systems Engineering, 2002. WISE 2002, 2002, p.53-62</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1181643$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1181643$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yew-Kwong Woon</creatorcontrib><creatorcontrib>Wee-Keong Ng</creatorcontrib><creatorcontrib>Ee-Peng Lim</creatorcontrib><title>Online and incremental mining of separately-grouped Web access logs</title><title>Proceedings of the Third International Conference on Web Information Systems Engineering, 2002. WISE 2002</title><addtitle>WISE</addtitle><description>The rising popularity of electronic commerce makes data mining an indispensable technology for business competitiveness. The World Wide Web provides abundant raw data in the form of Web access logs, Web transaction logs and Web user profiles. Without data mining tools, it is impossible to make any sense of such massive data. We focus on Web usage mining because it deals most appropriately with understanding user behavioral patterns which is the key to successful customer relationship management. Previous work dealt separately with specific issues of Web usage mining and made assumptions without taking a holistic view and thus, had limited practical applicability. We formulate a novel and more holistic version of Web usage mining termed transactionized logfile mining (TRALOM) to effectively and correctly identify transactions as well as to mine useful knowledge from Web access logs. We also introduce a new data structure, called the WebTrie, to efficiently hold useful preprocessed data so that TRALOM can be done in an online and incremental fashion. Experiments conducted on real Web server logs verify the usefulness and practicality of our proposed techniques.</description><subject>Customer relationship management</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data structures</subject><subject>Electronic commerce</subject><subject>Information analysis</subject><subject>Inspection</subject><subject>Web mining</subject><subject>Web server</subject><subject>Web sites</subject><isbn>9780769517667</isbn><isbn>0769517668</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81Kw0AURgdEUGoeQNzMC6Temcn8LSVULRS6qNJluZnchpFkEjJx0be3YL_N4WwOfIw9C1gLAf71uD1s1hJAXtUJU6k7VnjrwBqvhTXGPrAi5x-4rtLCCPHI6n3qYyKOqeUxhZkGSgv2fIgppo6PZ55pwhkX6i9lN4-_E7X8SA3HEChn3o9dfmL3Z-wzFTeu2Pf75qv-LHf7j239tiujsHoplZaWPFUOvJatNthYDOChaipvUAQLTlloZAgqBGl8UJbIOVQIqKR3asVe_ruRiE7THAecL6fbVfUHaZNIzw</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Yew-Kwong Woon</creator><creator>Wee-Keong Ng</creator><creator>Ee-Peng Lim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Online and incremental mining of separately-grouped Web access logs</title><author>Yew-Kwong Woon ; Wee-Keong Ng ; Ee-Peng Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3527e9e480952d56ab7ac0904b496a1c708370b2cc3cc269c37ee88a3a0a32983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Customer relationship management</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data structures</topic><topic>Electronic commerce</topic><topic>Information analysis</topic><topic>Inspection</topic><topic>Web mining</topic><topic>Web server</topic><topic>Web sites</topic><toplevel>online_resources</toplevel><creatorcontrib>Yew-Kwong Woon</creatorcontrib><creatorcontrib>Wee-Keong Ng</creatorcontrib><creatorcontrib>Ee-Peng Lim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yew-Kwong Woon</au><au>Wee-Keong Ng</au><au>Ee-Peng Lim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Online and incremental mining of separately-grouped Web access logs</atitle><btitle>Proceedings of the Third International Conference on Web Information Systems Engineering, 2002. WISE 2002</btitle><stitle>WISE</stitle><date>2002</date><risdate>2002</risdate><spage>53</spage><epage>62</epage><pages>53-62</pages><isbn>9780769517667</isbn><isbn>0769517668</isbn><abstract>The rising popularity of electronic commerce makes data mining an indispensable technology for business competitiveness. The World Wide Web provides abundant raw data in the form of Web access logs, Web transaction logs and Web user profiles. Without data mining tools, it is impossible to make any sense of such massive data. We focus on Web usage mining because it deals most appropriately with understanding user behavioral patterns which is the key to successful customer relationship management. Previous work dealt separately with specific issues of Web usage mining and made assumptions without taking a holistic view and thus, had limited practical applicability. We formulate a novel and more holistic version of Web usage mining termed transactionized logfile mining (TRALOM) to effectively and correctly identify transactions as well as to mine useful knowledge from Web access logs. We also introduce a new data structure, called the WebTrie, to efficiently hold useful preprocessed data so that TRALOM can be done in an online and incremental fashion. Experiments conducted on real Web server logs verify the usefulness and practicality of our proposed techniques.</abstract><pub>IEEE</pub><doi>10.1109/WISE.2002.1181643</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769517667
ispartof Proceedings of the Third International Conference on Web Information Systems Engineering, 2002. WISE 2002, 2002, p.53-62
issn
language eng
recordid cdi_ieee_primary_1181643
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Customer relationship management
Data analysis
Data mining
Data structures
Electronic commerce
Information analysis
Inspection
Web mining
Web server
Web sites
title Online and incremental mining of separately-grouped Web access logs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Online%20and%20incremental%20mining%20of%20separately-grouped%20Web%20access%20logs&rft.btitle=Proceedings%20of%20the%20Third%20International%20Conference%20on%20Web%20Information%20Systems%20Engineering,%202002.%20WISE%202002&rft.au=Yew-Kwong%20Woon&rft.date=2002&rft.spage=53&rft.epage=62&rft.pages=53-62&rft.isbn=9780769517667&rft.isbn_list=0769517668&rft_id=info:doi/10.1109/WISE.2002.1181643&rft_dat=%3Cieee_6IE%3E1181643%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1181643&rfr_iscdi=true