Online and incremental mining of separately-grouped Web access logs
The rising popularity of electronic commerce makes data mining an indispensable technology for business competitiveness. The World Wide Web provides abundant raw data in the form of Web access logs, Web transaction logs and Web user profiles. Without data mining tools, it is impossible to make any s...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | |
container_start_page | 53 |
container_title | |
container_volume | |
creator | Yew-Kwong Woon Wee-Keong Ng Ee-Peng Lim |
description | The rising popularity of electronic commerce makes data mining an indispensable technology for business competitiveness. The World Wide Web provides abundant raw data in the form of Web access logs, Web transaction logs and Web user profiles. Without data mining tools, it is impossible to make any sense of such massive data. We focus on Web usage mining because it deals most appropriately with understanding user behavioral patterns which is the key to successful customer relationship management. Previous work dealt separately with specific issues of Web usage mining and made assumptions without taking a holistic view and thus, had limited practical applicability. We formulate a novel and more holistic version of Web usage mining termed transactionized logfile mining (TRALOM) to effectively and correctly identify transactions as well as to mine useful knowledge from Web access logs. We also introduce a new data structure, called the WebTrie, to efficiently hold useful preprocessed data so that TRALOM can be done in an online and incremental fashion. Experiments conducted on real Web server logs verify the usefulness and practicality of our proposed techniques. |
doi_str_mv | 10.1109/WISE.2002.1181643 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1181643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1181643</ieee_id><sourcerecordid>1181643</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3527e9e480952d56ab7ac0904b496a1c708370b2cc3cc269c37ee88a3a0a32983</originalsourceid><addsrcrecordid>eNotj81Kw0AURgdEUGoeQNzMC6Temcn8LSVULRS6qNJluZnchpFkEjJx0be3YL_N4WwOfIw9C1gLAf71uD1s1hJAXtUJU6k7VnjrwBqvhTXGPrAi5x-4rtLCCPHI6n3qYyKOqeUxhZkGSgv2fIgppo6PZ55pwhkX6i9lN4-_E7X8SA3HEChn3o9dfmL3Z-wzFTeu2Pf75qv-LHf7j239tiujsHoplZaWPFUOvJatNthYDOChaipvUAQLTlloZAgqBGl8UJbIOVQIqKR3asVe_ruRiE7THAecL6fbVfUHaZNIzw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Online and incremental mining of separately-grouped Web access logs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yew-Kwong Woon ; Wee-Keong Ng ; Ee-Peng Lim</creator><creatorcontrib>Yew-Kwong Woon ; Wee-Keong Ng ; Ee-Peng Lim</creatorcontrib><description>The rising popularity of electronic commerce makes data mining an indispensable technology for business competitiveness. The World Wide Web provides abundant raw data in the form of Web access logs, Web transaction logs and Web user profiles. Without data mining tools, it is impossible to make any sense of such massive data. We focus on Web usage mining because it deals most appropriately with understanding user behavioral patterns which is the key to successful customer relationship management. Previous work dealt separately with specific issues of Web usage mining and made assumptions without taking a holistic view and thus, had limited practical applicability. We formulate a novel and more holistic version of Web usage mining termed transactionized logfile mining (TRALOM) to effectively and correctly identify transactions as well as to mine useful knowledge from Web access logs. We also introduce a new data structure, called the WebTrie, to efficiently hold useful preprocessed data so that TRALOM can be done in an online and incremental fashion. Experiments conducted on real Web server logs verify the usefulness and practicality of our proposed techniques.</description><identifier>ISBN: 9780769517667</identifier><identifier>ISBN: 0769517668</identifier><identifier>DOI: 10.1109/WISE.2002.1181643</identifier><language>eng</language><publisher>IEEE</publisher><subject>Customer relationship management ; Data analysis ; Data mining ; Data structures ; Electronic commerce ; Information analysis ; Inspection ; Web mining ; Web server ; Web sites</subject><ispartof>Proceedings of the Third International Conference on Web Information Systems Engineering, 2002. WISE 2002, 2002, p.53-62</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1181643$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1181643$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yew-Kwong Woon</creatorcontrib><creatorcontrib>Wee-Keong Ng</creatorcontrib><creatorcontrib>Ee-Peng Lim</creatorcontrib><title>Online and incremental mining of separately-grouped Web access logs</title><title>Proceedings of the Third International Conference on Web Information Systems Engineering, 2002. WISE 2002</title><addtitle>WISE</addtitle><description>The rising popularity of electronic commerce makes data mining an indispensable technology for business competitiveness. The World Wide Web provides abundant raw data in the form of Web access logs, Web transaction logs and Web user profiles. Without data mining tools, it is impossible to make any sense of such massive data. We focus on Web usage mining because it deals most appropriately with understanding user behavioral patterns which is the key to successful customer relationship management. Previous work dealt separately with specific issues of Web usage mining and made assumptions without taking a holistic view and thus, had limited practical applicability. We formulate a novel and more holistic version of Web usage mining termed transactionized logfile mining (TRALOM) to effectively and correctly identify transactions as well as to mine useful knowledge from Web access logs. We also introduce a new data structure, called the WebTrie, to efficiently hold useful preprocessed data so that TRALOM can be done in an online and incremental fashion. Experiments conducted on real Web server logs verify the usefulness and practicality of our proposed techniques.</description><subject>Customer relationship management</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data structures</subject><subject>Electronic commerce</subject><subject>Information analysis</subject><subject>Inspection</subject><subject>Web mining</subject><subject>Web server</subject><subject>Web sites</subject><isbn>9780769517667</isbn><isbn>0769517668</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81Kw0AURgdEUGoeQNzMC6Temcn8LSVULRS6qNJluZnchpFkEjJx0be3YL_N4WwOfIw9C1gLAf71uD1s1hJAXtUJU6k7VnjrwBqvhTXGPrAi5x-4rtLCCPHI6n3qYyKOqeUxhZkGSgv2fIgppo6PZ55pwhkX6i9lN4-_E7X8SA3HEChn3o9dfmL3Z-wzFTeu2Pf75qv-LHf7j239tiujsHoplZaWPFUOvJatNthYDOChaipvUAQLTlloZAgqBGl8UJbIOVQIqKR3asVe_ruRiE7THAecL6fbVfUHaZNIzw</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Yew-Kwong Woon</creator><creator>Wee-Keong Ng</creator><creator>Ee-Peng Lim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Online and incremental mining of separately-grouped Web access logs</title><author>Yew-Kwong Woon ; Wee-Keong Ng ; Ee-Peng Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3527e9e480952d56ab7ac0904b496a1c708370b2cc3cc269c37ee88a3a0a32983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Customer relationship management</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data structures</topic><topic>Electronic commerce</topic><topic>Information analysis</topic><topic>Inspection</topic><topic>Web mining</topic><topic>Web server</topic><topic>Web sites</topic><toplevel>online_resources</toplevel><creatorcontrib>Yew-Kwong Woon</creatorcontrib><creatorcontrib>Wee-Keong Ng</creatorcontrib><creatorcontrib>Ee-Peng Lim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yew-Kwong Woon</au><au>Wee-Keong Ng</au><au>Ee-Peng Lim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Online and incremental mining of separately-grouped Web access logs</atitle><btitle>Proceedings of the Third International Conference on Web Information Systems Engineering, 2002. WISE 2002</btitle><stitle>WISE</stitle><date>2002</date><risdate>2002</risdate><spage>53</spage><epage>62</epage><pages>53-62</pages><isbn>9780769517667</isbn><isbn>0769517668</isbn><abstract>The rising popularity of electronic commerce makes data mining an indispensable technology for business competitiveness. The World Wide Web provides abundant raw data in the form of Web access logs, Web transaction logs and Web user profiles. Without data mining tools, it is impossible to make any sense of such massive data. We focus on Web usage mining because it deals most appropriately with understanding user behavioral patterns which is the key to successful customer relationship management. Previous work dealt separately with specific issues of Web usage mining and made assumptions without taking a holistic view and thus, had limited practical applicability. We formulate a novel and more holistic version of Web usage mining termed transactionized logfile mining (TRALOM) to effectively and correctly identify transactions as well as to mine useful knowledge from Web access logs. We also introduce a new data structure, called the WebTrie, to efficiently hold useful preprocessed data so that TRALOM can be done in an online and incremental fashion. Experiments conducted on real Web server logs verify the usefulness and practicality of our proposed techniques.</abstract><pub>IEEE</pub><doi>10.1109/WISE.2002.1181643</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769517667 |
ispartof | Proceedings of the Third International Conference on Web Information Systems Engineering, 2002. WISE 2002, 2002, p.53-62 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1181643 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Customer relationship management Data analysis Data mining Data structures Electronic commerce Information analysis Inspection Web mining Web server Web sites |
title | Online and incremental mining of separately-grouped Web access logs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Online%20and%20incremental%20mining%20of%20separately-grouped%20Web%20access%20logs&rft.btitle=Proceedings%20of%20the%20Third%20International%20Conference%20on%20Web%20Information%20Systems%20Engineering,%202002.%20WISE%202002&rft.au=Yew-Kwong%20Woon&rft.date=2002&rft.spage=53&rft.epage=62&rft.pages=53-62&rft.isbn=9780769517667&rft.isbn_list=0769517668&rft_id=info:doi/10.1109/WISE.2002.1181643&rft_dat=%3Cieee_6IE%3E1181643%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1181643&rfr_iscdi=true |