Comparing immune and neural networks

The complexity of the immune system is sometimes compared to that of the brain. Both systems can be viewed as composed of networks of elements, which endow them with interesting features for the development of computational tools with potentialities for problem solving. This paper has two main goals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: de Castro, L.N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue
container_start_page 250
container_title
container_volume
creator de Castro, L.N.
description The complexity of the immune system is sometimes compared to that of the brain. Both systems can be viewed as composed of networks of elements, which endow them with interesting features for the development of computational tools with potentialities for problem solving. This paper has two main goals: 1) to introduce the general features of immune networks to the artificial neural network (ANN) community; and 2) to present a theoretical comparison between an ANN and a standard immune network. The comparison is highly simplified and general, taking into account how each network is structured, their basic components and mechanisms of adaptation, and information processing capabilities.
doi_str_mv 10.1109/SBRN.2002.1181486
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1181486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1181486</ieee_id><sourcerecordid>1181486</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-84c6decf29ade4325e190c48335f7a7076b946be7a6d3567233a3c8eac9397613</originalsourceid><addsrcrecordid>eNotj0tLw0AUhQeKYKn5AeImC7epc-fOc6lBrVAUfKzL7eSmTG3SMmkR_70BezYfZ_NxjhDXIOcAMtx9PLy_zpWUaqwetLcTUQTnpbPBgJNBX4piGLZyjDZgrJmK23rfHSinflOmrjv1XFLflD2fMu1GHH_2-Xu4Ehct7QYuzpyJr6fHz3pRLd-eX-r7ZZXA4bHyOtqGY6sCNaxRGYYgo_aIpnXkxhnroO2aHdkGjXUKkTB6phgwOAs4Ezf_3sTMq0NOHeXf1fkL_gHRFj29</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparing immune and neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>de Castro, L.N.</creator><creatorcontrib>de Castro, L.N.</creatorcontrib><description>The complexity of the immune system is sometimes compared to that of the brain. Both systems can be viewed as composed of networks of elements, which endow them with interesting features for the development of computational tools with potentialities for problem solving. This paper has two main goals: 1) to introduce the general features of immune networks to the artificial neural network (ANN) community; and 2) to present a theoretical comparison between an ANN and a standard immune network. The comparison is highly simplified and general, taking into account how each network is structured, their basic components and mechanisms of adaptation, and information processing capabilities.</description><identifier>ISBN: 9780769517094</identifier><identifier>ISBN: 0769517099</identifier><identifier>DOI: 10.1109/SBRN.2002.1181486</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Biological system modeling ; Computer networks ; Immune system ; Nervous system ; Neural networks ; Neurons ; Pattern recognition ; Viruses (medical)</subject><ispartof>VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings, 2002, p.250-255</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1181486$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1181486$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Castro, L.N.</creatorcontrib><title>Comparing immune and neural networks</title><title>VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings</title><addtitle>SBRN</addtitle><description>The complexity of the immune system is sometimes compared to that of the brain. Both systems can be viewed as composed of networks of elements, which endow them with interesting features for the development of computational tools with potentialities for problem solving. This paper has two main goals: 1) to introduce the general features of immune networks to the artificial neural network (ANN) community; and 2) to present a theoretical comparison between an ANN and a standard immune network. The comparison is highly simplified and general, taking into account how each network is structured, their basic components and mechanisms of adaptation, and information processing capabilities.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Biological system modeling</subject><subject>Computer networks</subject><subject>Immune system</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Pattern recognition</subject><subject>Viruses (medical)</subject><isbn>9780769517094</isbn><isbn>0769517099</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLw0AUhQeKYKn5AeImC7epc-fOc6lBrVAUfKzL7eSmTG3SMmkR_70BezYfZ_NxjhDXIOcAMtx9PLy_zpWUaqwetLcTUQTnpbPBgJNBX4piGLZyjDZgrJmK23rfHSinflOmrjv1XFLflD2fMu1GHH_2-Xu4Ehct7QYuzpyJr6fHz3pRLd-eX-r7ZZXA4bHyOtqGY6sCNaxRGYYgo_aIpnXkxhnroO2aHdkGjXUKkTB6phgwOAs4Ezf_3sTMq0NOHeXf1fkL_gHRFj29</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>de Castro, L.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Comparing immune and neural networks</title><author>de Castro, L.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-84c6decf29ade4325e190c48335f7a7076b946be7a6d3567233a3c8eac9397613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Biological system modeling</topic><topic>Computer networks</topic><topic>Immune system</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Pattern recognition</topic><topic>Viruses (medical)</topic><toplevel>online_resources</toplevel><creatorcontrib>de Castro, L.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Castro, L.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparing immune and neural networks</atitle><btitle>VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings</btitle><stitle>SBRN</stitle><date>2002</date><risdate>2002</risdate><spage>250</spage><epage>255</epage><pages>250-255</pages><isbn>9780769517094</isbn><isbn>0769517099</isbn><abstract>The complexity of the immune system is sometimes compared to that of the brain. Both systems can be viewed as composed of networks of elements, which endow them with interesting features for the development of computational tools with potentialities for problem solving. This paper has two main goals: 1) to introduce the general features of immune networks to the artificial neural network (ANN) community; and 2) to present a theoretical comparison between an ANN and a standard immune network. The comparison is highly simplified and general, taking into account how each network is structured, their basic components and mechanisms of adaptation, and information processing capabilities.</abstract><pub>IEEE</pub><doi>10.1109/SBRN.2002.1181486</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769517094
ispartof VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings, 2002, p.250-255
issn
language eng
recordid cdi_ieee_primary_1181486
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Biological neural networks
Biological system modeling
Computer networks
Immune system
Nervous system
Neural networks
Neurons
Pattern recognition
Viruses (medical)
title Comparing immune and neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparing%20immune%20and%20neural%20networks&rft.btitle=VII%20Brazilian%20Symposium%20on%20Neural%20Networks,%202002.%20SBRN%202002.%20Proceedings&rft.au=de%20Castro,%20L.N.&rft.date=2002&rft.spage=250&rft.epage=255&rft.pages=250-255&rft.isbn=9780769517094&rft.isbn_list=0769517099&rft_id=info:doi/10.1109/SBRN.2002.1181486&rft_dat=%3Cieee_6IE%3E1181486%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1181486&rfr_iscdi=true