Extracting driving signals from non-stationary time series

We propose a simple method for the reconstruction of slow dynamics perturbations from non-stationary time series records. The method traces the evolution of the perturbing signal by simultaneously learning the intrinsic stationary dynamics and the time dependency of the changing parameter. For this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Szeliga, M.I., Verdes, P.F., Granitto, P.M., Ceccatto, H.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue
container_start_page 104
container_title
container_volume
creator Szeliga, M.I.
Verdes, P.F.
Granitto, P.M.
Ceccatto, H.A.
description We propose a simple method for the reconstruction of slow dynamics perturbations from non-stationary time series records. The method traces the evolution of the perturbing signal by simultaneously learning the intrinsic stationary dynamics and the time dependency of the changing parameter. For this purpose, an extra input unit is added to a feedforward artificial neural network and a suitable error function minimized in the training process. Testing of our algorithm on synthetic data shows its efficacy and allows extracting general criteria for applications on real-world problems. Finally, a preliminary study of the well-known sunspot time series recovers particular features of this series, including recently reported changes in solar activity during last century.
doi_str_mv 10.1109/SBRN.2002.1181443
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1181443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1181443</ieee_id><sourcerecordid>1181443</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2bf284169ae5a5446e6e18a4f8b1b44de815a65d8aad10081f591af0ea0d0cac3</originalsourceid><addsrcrecordid>eNotj91KxDAUhAMiKGsfQLzpC3Q9p03SxDtd1h9YFHb1ejltT5aITSUJom9vxZ2bj4FhmBHiEmGJCPZ6d7d9XtYA9WwNStmciMK2BlptFbZg5ZkoUnqHWVKh0upc3Ky_c6Q--3Aoh-i__pj8IdBHKl2cxjJMoUqZsp8CxZ8y-5HLxNFzuhCnbo5xceRCvN2vX1eP1ebl4Wl1u6k8tipXdedqI1FbYkVKSs2a0ZB0psNOyoENKtJqMEQDAhh0yiI5YIIBeuqbhbj67_XMvP-MfpyH7I8Pm18E0kcX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extracting driving signals from non-stationary time series</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Szeliga, M.I. ; Verdes, P.F. ; Granitto, P.M. ; Ceccatto, H.A.</creator><creatorcontrib>Szeliga, M.I. ; Verdes, P.F. ; Granitto, P.M. ; Ceccatto, H.A.</creatorcontrib><description>We propose a simple method for the reconstruction of slow dynamics perturbations from non-stationary time series records. The method traces the evolution of the perturbing signal by simultaneously learning the intrinsic stationary dynamics and the time dependency of the changing parameter. For this purpose, an extra input unit is added to a feedforward artificial neural network and a suitable error function minimized in the training process. Testing of our algorithm on synthetic data shows its efficacy and allows extracting general criteria for applications on real-world problems. Finally, a preliminary study of the well-known sunspot time series recovers particular features of this series, including recently reported changes in solar activity during last century.</description><identifier>ISBN: 9780769517094</identifier><identifier>ISBN: 0769517099</identifier><identifier>DOI: 10.1109/SBRN.2002.1181443</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biomedical monitoring ; Chaotic communication ; Computer errors ; Data mining ; Delay ; Ecosystems ; Nonlinear dynamical systems ; Testing ; Time series analysis</subject><ispartof>VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings, 2002, p.104-108</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1181443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1181443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Szeliga, M.I.</creatorcontrib><creatorcontrib>Verdes, P.F.</creatorcontrib><creatorcontrib>Granitto, P.M.</creatorcontrib><creatorcontrib>Ceccatto, H.A.</creatorcontrib><title>Extracting driving signals from non-stationary time series</title><title>VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings</title><addtitle>SBRN</addtitle><description>We propose a simple method for the reconstruction of slow dynamics perturbations from non-stationary time series records. The method traces the evolution of the perturbing signal by simultaneously learning the intrinsic stationary dynamics and the time dependency of the changing parameter. For this purpose, an extra input unit is added to a feedforward artificial neural network and a suitable error function minimized in the training process. Testing of our algorithm on synthetic data shows its efficacy and allows extracting general criteria for applications on real-world problems. Finally, a preliminary study of the well-known sunspot time series recovers particular features of this series, including recently reported changes in solar activity during last century.</description><subject>Artificial neural networks</subject><subject>Biomedical monitoring</subject><subject>Chaotic communication</subject><subject>Computer errors</subject><subject>Data mining</subject><subject>Delay</subject><subject>Ecosystems</subject><subject>Nonlinear dynamical systems</subject><subject>Testing</subject><subject>Time series analysis</subject><isbn>9780769517094</isbn><isbn>0769517099</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj91KxDAUhAMiKGsfQLzpC3Q9p03SxDtd1h9YFHb1ejltT5aITSUJom9vxZ2bj4FhmBHiEmGJCPZ6d7d9XtYA9WwNStmciMK2BlptFbZg5ZkoUnqHWVKh0upc3Ky_c6Q--3Aoh-i__pj8IdBHKl2cxjJMoUqZsp8CxZ8y-5HLxNFzuhCnbo5xceRCvN2vX1eP1ebl4Wl1u6k8tipXdedqI1FbYkVKSs2a0ZB0psNOyoENKtJqMEQDAhh0yiI5YIIBeuqbhbj67_XMvP-MfpyH7I8Pm18E0kcX</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Szeliga, M.I.</creator><creator>Verdes, P.F.</creator><creator>Granitto, P.M.</creator><creator>Ceccatto, H.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Extracting driving signals from non-stationary time series</title><author>Szeliga, M.I. ; Verdes, P.F. ; Granitto, P.M. ; Ceccatto, H.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2bf284169ae5a5446e6e18a4f8b1b44de815a65d8aad10081f591af0ea0d0cac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Artificial neural networks</topic><topic>Biomedical monitoring</topic><topic>Chaotic communication</topic><topic>Computer errors</topic><topic>Data mining</topic><topic>Delay</topic><topic>Ecosystems</topic><topic>Nonlinear dynamical systems</topic><topic>Testing</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Szeliga, M.I.</creatorcontrib><creatorcontrib>Verdes, P.F.</creatorcontrib><creatorcontrib>Granitto, P.M.</creatorcontrib><creatorcontrib>Ceccatto, H.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Szeliga, M.I.</au><au>Verdes, P.F.</au><au>Granitto, P.M.</au><au>Ceccatto, H.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extracting driving signals from non-stationary time series</atitle><btitle>VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings</btitle><stitle>SBRN</stitle><date>2002</date><risdate>2002</risdate><spage>104</spage><epage>108</epage><pages>104-108</pages><isbn>9780769517094</isbn><isbn>0769517099</isbn><abstract>We propose a simple method for the reconstruction of slow dynamics perturbations from non-stationary time series records. The method traces the evolution of the perturbing signal by simultaneously learning the intrinsic stationary dynamics and the time dependency of the changing parameter. For this purpose, an extra input unit is added to a feedforward artificial neural network and a suitable error function minimized in the training process. Testing of our algorithm on synthetic data shows its efficacy and allows extracting general criteria for applications on real-world problems. Finally, a preliminary study of the well-known sunspot time series recovers particular features of this series, including recently reported changes in solar activity during last century.</abstract><pub>IEEE</pub><doi>10.1109/SBRN.2002.1181443</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769517094
ispartof VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings, 2002, p.104-108
issn
language eng
recordid cdi_ieee_primary_1181443
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Biomedical monitoring
Chaotic communication
Computer errors
Data mining
Delay
Ecosystems
Nonlinear dynamical systems
Testing
Time series analysis
title Extracting driving signals from non-stationary time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extracting%20driving%20signals%20from%20non-stationary%20time%20series&rft.btitle=VII%20Brazilian%20Symposium%20on%20Neural%20Networks,%202002.%20SBRN%202002.%20Proceedings&rft.au=Szeliga,%20M.I.&rft.date=2002&rft.spage=104&rft.epage=108&rft.pages=104-108&rft.isbn=9780769517094&rft.isbn_list=0769517099&rft_id=info:doi/10.1109/SBRN.2002.1181443&rft_dat=%3Cieee_6IE%3E1181443%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1181443&rfr_iscdi=true