Research on cooperation and learning in multi-agent system
Cooperation and learning in multi-agent systems (MAS) is of special interest in DAI. This paper presents a cooperation model called MACM that provides a flexible coordination mechanism to support cooperation and learning in MAS. The learning agent adopts model-free distributed Q-learning. By using p...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1162 vol.2 |
---|---|
container_issue | |
container_start_page | 1159 |
container_title | |
container_volume | 2 |
creator | Shuli Zheng Xiangfeng Luo Zhenghu Luo Jingan Yang |
description | Cooperation and learning in multi-agent systems (MAS) is of special interest in DAI. This paper presents a cooperation model called MACM that provides a flexible coordination mechanism to support cooperation and learning in MAS. The learning agent adopts model-free distributed Q-learning. By using projection method, the distributed Q-learning algorithm needs less storage space for the Q-table than the classical Q-learning. |
doi_str_mv | 10.1109/ICOSP.2002.1179995 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1179995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1179995</ieee_id><sourcerecordid>1179995</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7b95348f3222a605f0ded43f8ba82637c0c61023601a00c382cd2ca3ec3c746a3</originalsourceid><addsrcrecordid>eNotT9tKw0AUXBBBqfkBfdkfSD27J3vzTYKXQqFi63M53WzqSrIp2fjQvzdgh4GZYWBgGLsXsBQC3OOq3mw_lhJAztk459QVK5yxMBNNZa24YUXOPzADnVYKb9nTZ8iBRv_Nh8T9MJzCSFOcPaWGd3OTYjrymHj_202xpGNIE8_nPIX-jl231OVQXHTBvl5fdvV7ud68rerndRmFUVNpDk5hZVuUUpIG1UITmgpbeyArNRoPXguQqEEQgEcrfSM9YfDoTaUJF-zhfzeGEPanMfY0nveXh_gH0KxGEA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research on cooperation and learning in multi-agent system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shuli Zheng ; Xiangfeng Luo ; Zhenghu Luo ; Jingan Yang</creator><creatorcontrib>Shuli Zheng ; Xiangfeng Luo ; Zhenghu Luo ; Jingan Yang</creatorcontrib><description>Cooperation and learning in multi-agent systems (MAS) is of special interest in DAI. This paper presents a cooperation model called MACM that provides a flexible coordination mechanism to support cooperation and learning in MAS. The learning agent adopts model-free distributed Q-learning. By using projection method, the distributed Q-learning algorithm needs less storage space for the Q-table than the classical Q-learning.</description><identifier>ISBN: 9780780374881</identifier><identifier>ISBN: 0780374886</identifier><identifier>DOI: 10.1109/ICOSP.2002.1179995</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Bayesian methods ; Centralized control ; Computer aided instruction ; Control systems ; Councils ; Game theory ; Intelligent agent ; Learning ; Multiagent systems</subject><ispartof>6th International Conference on Signal Processing, 2002, 2002, Vol.2, p.1159-1162 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1179995$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1179995$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shuli Zheng</creatorcontrib><creatorcontrib>Xiangfeng Luo</creatorcontrib><creatorcontrib>Zhenghu Luo</creatorcontrib><creatorcontrib>Jingan Yang</creatorcontrib><title>Research on cooperation and learning in multi-agent system</title><title>6th International Conference on Signal Processing, 2002</title><addtitle>ICOSP</addtitle><description>Cooperation and learning in multi-agent systems (MAS) is of special interest in DAI. This paper presents a cooperation model called MACM that provides a flexible coordination mechanism to support cooperation and learning in MAS. The learning agent adopts model-free distributed Q-learning. By using projection method, the distributed Q-learning algorithm needs less storage space for the Q-table than the classical Q-learning.</description><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Centralized control</subject><subject>Computer aided instruction</subject><subject>Control systems</subject><subject>Councils</subject><subject>Game theory</subject><subject>Intelligent agent</subject><subject>Learning</subject><subject>Multiagent systems</subject><isbn>9780780374881</isbn><isbn>0780374886</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT9tKw0AUXBBBqfkBfdkfSD27J3vzTYKXQqFi63M53WzqSrIp2fjQvzdgh4GZYWBgGLsXsBQC3OOq3mw_lhJAztk459QVK5yxMBNNZa24YUXOPzADnVYKb9nTZ8iBRv_Nh8T9MJzCSFOcPaWGd3OTYjrymHj_202xpGNIE8_nPIX-jl231OVQXHTBvl5fdvV7ud68rerndRmFUVNpDk5hZVuUUpIG1UITmgpbeyArNRoPXguQqEEQgEcrfSM9YfDoTaUJF-zhfzeGEPanMfY0nveXh_gH0KxGEA</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Shuli Zheng</creator><creator>Xiangfeng Luo</creator><creator>Zhenghu Luo</creator><creator>Jingan Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Research on cooperation and learning in multi-agent system</title><author>Shuli Zheng ; Xiangfeng Luo ; Zhenghu Luo ; Jingan Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7b95348f3222a605f0ded43f8ba82637c0c61023601a00c382cd2ca3ec3c746a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Centralized control</topic><topic>Computer aided instruction</topic><topic>Control systems</topic><topic>Councils</topic><topic>Game theory</topic><topic>Intelligent agent</topic><topic>Learning</topic><topic>Multiagent systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Shuli Zheng</creatorcontrib><creatorcontrib>Xiangfeng Luo</creatorcontrib><creatorcontrib>Zhenghu Luo</creatorcontrib><creatorcontrib>Jingan Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shuli Zheng</au><au>Xiangfeng Luo</au><au>Zhenghu Luo</au><au>Jingan Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research on cooperation and learning in multi-agent system</atitle><btitle>6th International Conference on Signal Processing, 2002</btitle><stitle>ICOSP</stitle><date>2002</date><risdate>2002</risdate><volume>2</volume><spage>1159</spage><epage>1162 vol.2</epage><pages>1159-1162 vol.2</pages><isbn>9780780374881</isbn><isbn>0780374886</isbn><abstract>Cooperation and learning in multi-agent systems (MAS) is of special interest in DAI. This paper presents a cooperation model called MACM that provides a flexible coordination mechanism to support cooperation and learning in MAS. The learning agent adopts model-free distributed Q-learning. By using projection method, the distributed Q-learning algorithm needs less storage space for the Q-table than the classical Q-learning.</abstract><pub>IEEE</pub><doi>10.1109/ICOSP.2002.1179995</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780374881 |
ispartof | 6th International Conference on Signal Processing, 2002, 2002, Vol.2, p.1159-1162 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1179995 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Bayesian methods Centralized control Computer aided instruction Control systems Councils Game theory Intelligent agent Learning Multiagent systems |
title | Research on cooperation and learning in multi-agent system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20on%20cooperation%20and%20learning%20in%20multi-agent%20system&rft.btitle=6th%20International%20Conference%20on%20Signal%20Processing,%202002&rft.au=Shuli%20Zheng&rft.date=2002&rft.volume=2&rft.spage=1159&rft.epage=1162%20vol.2&rft.pages=1159-1162%20vol.2&rft.isbn=9780780374881&rft.isbn_list=0780374886&rft_id=info:doi/10.1109/ICOSP.2002.1179995&rft_dat=%3Cieee_6IE%3E1179995%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1179995&rfr_iscdi=true |