Research on cooperation and learning in multi-agent system

Cooperation and learning in multi-agent systems (MAS) is of special interest in DAI. This paper presents a cooperation model called MACM that provides a flexible coordination mechanism to support cooperation and learning in MAS. The learning agent adopts model-free distributed Q-learning. By using p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shuli Zheng, Xiangfeng Luo, Zhenghu Luo, Jingan Yang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1162 vol.2
container_issue
container_start_page 1159
container_title
container_volume 2
creator Shuli Zheng
Xiangfeng Luo
Zhenghu Luo
Jingan Yang
description Cooperation and learning in multi-agent systems (MAS) is of special interest in DAI. This paper presents a cooperation model called MACM that provides a flexible coordination mechanism to support cooperation and learning in MAS. The learning agent adopts model-free distributed Q-learning. By using projection method, the distributed Q-learning algorithm needs less storage space for the Q-table than the classical Q-learning.
doi_str_mv 10.1109/ICOSP.2002.1179995
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1179995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1179995</ieee_id><sourcerecordid>1179995</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7b95348f3222a605f0ded43f8ba82637c0c61023601a00c382cd2ca3ec3c746a3</originalsourceid><addsrcrecordid>eNotT9tKw0AUXBBBqfkBfdkfSD27J3vzTYKXQqFi63M53WzqSrIp2fjQvzdgh4GZYWBgGLsXsBQC3OOq3mw_lhJAztk459QVK5yxMBNNZa24YUXOPzADnVYKb9nTZ8iBRv_Nh8T9MJzCSFOcPaWGd3OTYjrymHj_202xpGNIE8_nPIX-jl231OVQXHTBvl5fdvV7ud68rerndRmFUVNpDk5hZVuUUpIG1UITmgpbeyArNRoPXguQqEEQgEcrfSM9YfDoTaUJF-zhfzeGEPanMfY0nveXh_gH0KxGEA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research on cooperation and learning in multi-agent system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shuli Zheng ; Xiangfeng Luo ; Zhenghu Luo ; Jingan Yang</creator><creatorcontrib>Shuli Zheng ; Xiangfeng Luo ; Zhenghu Luo ; Jingan Yang</creatorcontrib><description>Cooperation and learning in multi-agent systems (MAS) is of special interest in DAI. This paper presents a cooperation model called MACM that provides a flexible coordination mechanism to support cooperation and learning in MAS. The learning agent adopts model-free distributed Q-learning. By using projection method, the distributed Q-learning algorithm needs less storage space for the Q-table than the classical Q-learning.</description><identifier>ISBN: 9780780374881</identifier><identifier>ISBN: 0780374886</identifier><identifier>DOI: 10.1109/ICOSP.2002.1179995</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Bayesian methods ; Centralized control ; Computer aided instruction ; Control systems ; Councils ; Game theory ; Intelligent agent ; Learning ; Multiagent systems</subject><ispartof>6th International Conference on Signal Processing, 2002, 2002, Vol.2, p.1159-1162 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1179995$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1179995$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shuli Zheng</creatorcontrib><creatorcontrib>Xiangfeng Luo</creatorcontrib><creatorcontrib>Zhenghu Luo</creatorcontrib><creatorcontrib>Jingan Yang</creatorcontrib><title>Research on cooperation and learning in multi-agent system</title><title>6th International Conference on Signal Processing, 2002</title><addtitle>ICOSP</addtitle><description>Cooperation and learning in multi-agent systems (MAS) is of special interest in DAI. This paper presents a cooperation model called MACM that provides a flexible coordination mechanism to support cooperation and learning in MAS. The learning agent adopts model-free distributed Q-learning. By using projection method, the distributed Q-learning algorithm needs less storage space for the Q-table than the classical Q-learning.</description><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Centralized control</subject><subject>Computer aided instruction</subject><subject>Control systems</subject><subject>Councils</subject><subject>Game theory</subject><subject>Intelligent agent</subject><subject>Learning</subject><subject>Multiagent systems</subject><isbn>9780780374881</isbn><isbn>0780374886</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT9tKw0AUXBBBqfkBfdkfSD27J3vzTYKXQqFi63M53WzqSrIp2fjQvzdgh4GZYWBgGLsXsBQC3OOq3mw_lhJAztk459QVK5yxMBNNZa24YUXOPzADnVYKb9nTZ8iBRv_Nh8T9MJzCSFOcPaWGd3OTYjrymHj_202xpGNIE8_nPIX-jl231OVQXHTBvl5fdvV7ud68rerndRmFUVNpDk5hZVuUUpIG1UITmgpbeyArNRoPXguQqEEQgEcrfSM9YfDoTaUJF-zhfzeGEPanMfY0nveXh_gH0KxGEA</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Shuli Zheng</creator><creator>Xiangfeng Luo</creator><creator>Zhenghu Luo</creator><creator>Jingan Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Research on cooperation and learning in multi-agent system</title><author>Shuli Zheng ; Xiangfeng Luo ; Zhenghu Luo ; Jingan Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7b95348f3222a605f0ded43f8ba82637c0c61023601a00c382cd2ca3ec3c746a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Centralized control</topic><topic>Computer aided instruction</topic><topic>Control systems</topic><topic>Councils</topic><topic>Game theory</topic><topic>Intelligent agent</topic><topic>Learning</topic><topic>Multiagent systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Shuli Zheng</creatorcontrib><creatorcontrib>Xiangfeng Luo</creatorcontrib><creatorcontrib>Zhenghu Luo</creatorcontrib><creatorcontrib>Jingan Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shuli Zheng</au><au>Xiangfeng Luo</au><au>Zhenghu Luo</au><au>Jingan Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research on cooperation and learning in multi-agent system</atitle><btitle>6th International Conference on Signal Processing, 2002</btitle><stitle>ICOSP</stitle><date>2002</date><risdate>2002</risdate><volume>2</volume><spage>1159</spage><epage>1162 vol.2</epage><pages>1159-1162 vol.2</pages><isbn>9780780374881</isbn><isbn>0780374886</isbn><abstract>Cooperation and learning in multi-agent systems (MAS) is of special interest in DAI. This paper presents a cooperation model called MACM that provides a flexible coordination mechanism to support cooperation and learning in MAS. The learning agent adopts model-free distributed Q-learning. By using projection method, the distributed Q-learning algorithm needs less storage space for the Q-table than the classical Q-learning.</abstract><pub>IEEE</pub><doi>10.1109/ICOSP.2002.1179995</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780374881
ispartof 6th International Conference on Signal Processing, 2002, 2002, Vol.2, p.1159-1162 vol.2
issn
language eng
recordid cdi_ieee_primary_1179995
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Bayesian methods
Centralized control
Computer aided instruction
Control systems
Councils
Game theory
Intelligent agent
Learning
Multiagent systems
title Research on cooperation and learning in multi-agent system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20on%20cooperation%20and%20learning%20in%20multi-agent%20system&rft.btitle=6th%20International%20Conference%20on%20Signal%20Processing,%202002&rft.au=Shuli%20Zheng&rft.date=2002&rft.volume=2&rft.spage=1159&rft.epage=1162%20vol.2&rft.pages=1159-1162%20vol.2&rft.isbn=9780780374881&rft.isbn_list=0780374886&rft_id=info:doi/10.1109/ICOSP.2002.1179995&rft_dat=%3Cieee_6IE%3E1179995%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1179995&rfr_iscdi=true