Electrothermal technology of coating
A technique of microparticle acceleration by the shock-compressed gas region (SCGR) of the pulsed gas-plasma flow is used at the Moscow Engineering Physics Institute for the purpose of obtaining coatings out of powder materials by means of electrothermal launchers. As a result, microparticles are ac...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2003-01, Vol.39 (1), p.314-318 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 1 |
container_start_page | 314 |
container_title | IEEE transactions on magnetics |
container_volume | 39 |
creator | Shcolnikov, E.Ya Maslennikov, S.P. Netchaev, N.N. Nevolin, V.N. Sukhanova, L.A. |
description | A technique of microparticle acceleration by the shock-compressed gas region (SCGR) of the pulsed gas-plasma flow is used at the Moscow Engineering Physics Institute for the purpose of obtaining coatings out of powder materials by means of electrothermal launchers. As a result, microparticles are accelerated up to high velocities, the required temperature regime of the process being preserved. For SCGR formation, a new launcher structure has been developed. It has an additional cylindrical cavity, which is mounted in the initial part of the barrel behind the discharge gap and is connected with neighboring parts by conic transitions. The large space extension of the so-formed SCGR makes it possible to accelerate microparticles up to very high velocity (up to 2 km/s) and substantially widen the range of their dimensions (up to 50 /spl mu/m) and densities (up to 10/spl times/10/sup 3/ kg/m/sup 3/). Experimental tests and theoretical analysis on the basis of one- and two-dimensional models have shown that a dynamic effect existed which resulted in SCGR additional acceleration in the barrel. That effect increases the microparticle acceleration efficiency. |
doi_str_mv | 10.1109/TMAG.2002.805920 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1179833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1179833</ieee_id><sourcerecordid>2429809501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8812fceec70322ebb89e743bd115ca3362d094dbfe6a6db141a22d22a40f99713</originalsourceid><addsrcrecordid>eNpdkEFLw0AQRhdRsFbvgpci4i11dnaT7B5LqVWoeKnnZbOZtClptu6mh_57UyIInoaB930zPMbuOUw5B_2y_pgtpwiAUwWpRrhgI64lTwAyfclGAFwlWmbymt3EuOtXmXIYsadFQ64LvttS2Ntm0pHbtr7xm9PEVxPnbVe3m1t2Vdkm0t3vHLOv18V6_pasPpfv89kqcYLrLlGKY-WIXA4CkYpCacqlKErOU2eFyLAELcuiosxmZcElt4glopVQaZ1zMWbPQ-8h-O8jxc7s6-ioaWxL_hgNKiEwR-zBx3_gzh9D2_9mlJJCZijSHoIBcsHHGKgyh1DvbTgZDubszJydmbMzMzjrIw9DpCaiP5znur8sfgA3_GYd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884346235</pqid></control><display><type>article</type><title>Electrothermal technology of coating</title><source>IEEE Electronic Library (IEL)</source><creator>Shcolnikov, E.Ya ; Maslennikov, S.P. ; Netchaev, N.N. ; Nevolin, V.N. ; Sukhanova, L.A.</creator><creatorcontrib>Shcolnikov, E.Ya ; Maslennikov, S.P. ; Netchaev, N.N. ; Nevolin, V.N. ; Sukhanova, L.A.</creatorcontrib><description>A technique of microparticle acceleration by the shock-compressed gas region (SCGR) of the pulsed gas-plasma flow is used at the Moscow Engineering Physics Institute for the purpose of obtaining coatings out of powder materials by means of electrothermal launchers. As a result, microparticles are accelerated up to high velocities, the required temperature regime of the process being preserved. For SCGR formation, a new launcher structure has been developed. It has an additional cylindrical cavity, which is mounted in the initial part of the barrel behind the discharge gap and is connected with neighboring parts by conic transitions. The large space extension of the so-formed SCGR makes it possible to accelerate microparticles up to very high velocity (up to 2 km/s) and substantially widen the range of their dimensions (up to 50 /spl mu/m) and densities (up to 10/spl times/10/sup 3/ kg/m/sup 3/). Experimental tests and theoretical analysis on the basis of one- and two-dimensional models have shown that a dynamic effect existed which resulted in SCGR additional acceleration in the barrel. That effect increases the microparticle acceleration efficiency.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2002.805920</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Coatings ; Electrothermal effects ; Electrothermal launching ; Magnetism ; Physics ; Plasma accelerators ; Plasma materials processing ; Plasma temperature ; Powders ; Pulse generation ; Studies</subject><ispartof>IEEE transactions on magnetics, 2003-01, Vol.39 (1), p.314-318</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8812fceec70322ebb89e743bd115ca3362d094dbfe6a6db141a22d22a40f99713</citedby><cites>FETCH-LOGICAL-c319t-8812fceec70322ebb89e743bd115ca3362d094dbfe6a6db141a22d22a40f99713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1179833$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1179833$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shcolnikov, E.Ya</creatorcontrib><creatorcontrib>Maslennikov, S.P.</creatorcontrib><creatorcontrib>Netchaev, N.N.</creatorcontrib><creatorcontrib>Nevolin, V.N.</creatorcontrib><creatorcontrib>Sukhanova, L.A.</creatorcontrib><title>Electrothermal technology of coating</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>A technique of microparticle acceleration by the shock-compressed gas region (SCGR) of the pulsed gas-plasma flow is used at the Moscow Engineering Physics Institute for the purpose of obtaining coatings out of powder materials by means of electrothermal launchers. As a result, microparticles are accelerated up to high velocities, the required temperature regime of the process being preserved. For SCGR formation, a new launcher structure has been developed. It has an additional cylindrical cavity, which is mounted in the initial part of the barrel behind the discharge gap and is connected with neighboring parts by conic transitions. The large space extension of the so-formed SCGR makes it possible to accelerate microparticles up to very high velocity (up to 2 km/s) and substantially widen the range of their dimensions (up to 50 /spl mu/m) and densities (up to 10/spl times/10/sup 3/ kg/m/sup 3/). Experimental tests and theoretical analysis on the basis of one- and two-dimensional models have shown that a dynamic effect existed which resulted in SCGR additional acceleration in the barrel. That effect increases the microparticle acceleration efficiency.</description><subject>Acceleration</subject><subject>Coatings</subject><subject>Electrothermal effects</subject><subject>Electrothermal launching</subject><subject>Magnetism</subject><subject>Physics</subject><subject>Plasma accelerators</subject><subject>Plasma materials processing</subject><subject>Plasma temperature</subject><subject>Powders</subject><subject>Pulse generation</subject><subject>Studies</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLw0AQRhdRsFbvgpci4i11dnaT7B5LqVWoeKnnZbOZtClptu6mh_57UyIInoaB930zPMbuOUw5B_2y_pgtpwiAUwWpRrhgI64lTwAyfclGAFwlWmbymt3EuOtXmXIYsadFQ64LvttS2Ntm0pHbtr7xm9PEVxPnbVe3m1t2Vdkm0t3vHLOv18V6_pasPpfv89kqcYLrLlGKY-WIXA4CkYpCacqlKErOU2eFyLAELcuiosxmZcElt4glopVQaZ1zMWbPQ-8h-O8jxc7s6-ioaWxL_hgNKiEwR-zBx3_gzh9D2_9mlJJCZijSHoIBcsHHGKgyh1DvbTgZDubszJydmbMzMzjrIw9DpCaiP5znur8sfgA3_GYd</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>Shcolnikov, E.Ya</creator><creator>Maslennikov, S.P.</creator><creator>Netchaev, N.N.</creator><creator>Nevolin, V.N.</creator><creator>Sukhanova, L.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200301</creationdate><title>Electrothermal technology of coating</title><author>Shcolnikov, E.Ya ; Maslennikov, S.P. ; Netchaev, N.N. ; Nevolin, V.N. ; Sukhanova, L.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8812fceec70322ebb89e743bd115ca3362d094dbfe6a6db141a22d22a40f99713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acceleration</topic><topic>Coatings</topic><topic>Electrothermal effects</topic><topic>Electrothermal launching</topic><topic>Magnetism</topic><topic>Physics</topic><topic>Plasma accelerators</topic><topic>Plasma materials processing</topic><topic>Plasma temperature</topic><topic>Powders</topic><topic>Pulse generation</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Shcolnikov, E.Ya</creatorcontrib><creatorcontrib>Maslennikov, S.P.</creatorcontrib><creatorcontrib>Netchaev, N.N.</creatorcontrib><creatorcontrib>Nevolin, V.N.</creatorcontrib><creatorcontrib>Sukhanova, L.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shcolnikov, E.Ya</au><au>Maslennikov, S.P.</au><au>Netchaev, N.N.</au><au>Nevolin, V.N.</au><au>Sukhanova, L.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrothermal technology of coating</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2003-01</date><risdate>2003</risdate><volume>39</volume><issue>1</issue><spage>314</spage><epage>318</epage><pages>314-318</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A technique of microparticle acceleration by the shock-compressed gas region (SCGR) of the pulsed gas-plasma flow is used at the Moscow Engineering Physics Institute for the purpose of obtaining coatings out of powder materials by means of electrothermal launchers. As a result, microparticles are accelerated up to high velocities, the required temperature regime of the process being preserved. For SCGR formation, a new launcher structure has been developed. It has an additional cylindrical cavity, which is mounted in the initial part of the barrel behind the discharge gap and is connected with neighboring parts by conic transitions. The large space extension of the so-formed SCGR makes it possible to accelerate microparticles up to very high velocity (up to 2 km/s) and substantially widen the range of their dimensions (up to 50 /spl mu/m) and densities (up to 10/spl times/10/sup 3/ kg/m/sup 3/). Experimental tests and theoretical analysis on the basis of one- and two-dimensional models have shown that a dynamic effect existed which resulted in SCGR additional acceleration in the barrel. That effect increases the microparticle acceleration efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2002.805920</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2003-01, Vol.39 (1), p.314-318 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_1179833 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Coatings Electrothermal effects Electrothermal launching Magnetism Physics Plasma accelerators Plasma materials processing Plasma temperature Powders Pulse generation Studies |
title | Electrothermal technology of coating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrothermal%20technology%20of%20coating&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Shcolnikov,%20E.Ya&rft.date=2003-01&rft.volume=39&rft.issue=1&rft.spage=314&rft.epage=318&rft.pages=314-318&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2002.805920&rft_dat=%3Cproquest_RIE%3E2429809501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884346235&rft_id=info:pmid/&rft_ieee_id=1179833&rfr_iscdi=true |