Electrothermal technology of coating

A technique of microparticle acceleration by the shock-compressed gas region (SCGR) of the pulsed gas-plasma flow is used at the Moscow Engineering Physics Institute for the purpose of obtaining coatings out of powder materials by means of electrothermal launchers. As a result, microparticles are ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2003-01, Vol.39 (1), p.314-318
Hauptverfasser: Shcolnikov, E.Ya, Maslennikov, S.P., Netchaev, N.N., Nevolin, V.N., Sukhanova, L.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 1
container_start_page 314
container_title IEEE transactions on magnetics
container_volume 39
creator Shcolnikov, E.Ya
Maslennikov, S.P.
Netchaev, N.N.
Nevolin, V.N.
Sukhanova, L.A.
description A technique of microparticle acceleration by the shock-compressed gas region (SCGR) of the pulsed gas-plasma flow is used at the Moscow Engineering Physics Institute for the purpose of obtaining coatings out of powder materials by means of electrothermal launchers. As a result, microparticles are accelerated up to high velocities, the required temperature regime of the process being preserved. For SCGR formation, a new launcher structure has been developed. It has an additional cylindrical cavity, which is mounted in the initial part of the barrel behind the discharge gap and is connected with neighboring parts by conic transitions. The large space extension of the so-formed SCGR makes it possible to accelerate microparticles up to very high velocity (up to 2 km/s) and substantially widen the range of their dimensions (up to 50 /spl mu/m) and densities (up to 10/spl times/10/sup 3/ kg/m/sup 3/). Experimental tests and theoretical analysis on the basis of one- and two-dimensional models have shown that a dynamic effect existed which resulted in SCGR additional acceleration in the barrel. That effect increases the microparticle acceleration efficiency.
doi_str_mv 10.1109/TMAG.2002.805920
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1179833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1179833</ieee_id><sourcerecordid>2429809501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8812fceec70322ebb89e743bd115ca3362d094dbfe6a6db141a22d22a40f99713</originalsourceid><addsrcrecordid>eNpdkEFLw0AQRhdRsFbvgpci4i11dnaT7B5LqVWoeKnnZbOZtClptu6mh_57UyIInoaB930zPMbuOUw5B_2y_pgtpwiAUwWpRrhgI64lTwAyfclGAFwlWmbymt3EuOtXmXIYsadFQ64LvttS2Ntm0pHbtr7xm9PEVxPnbVe3m1t2Vdkm0t3vHLOv18V6_pasPpfv89kqcYLrLlGKY-WIXA4CkYpCacqlKErOU2eFyLAELcuiosxmZcElt4glopVQaZ1zMWbPQ-8h-O8jxc7s6-ioaWxL_hgNKiEwR-zBx3_gzh9D2_9mlJJCZijSHoIBcsHHGKgyh1DvbTgZDubszJydmbMzMzjrIw9DpCaiP5znur8sfgA3_GYd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884346235</pqid></control><display><type>article</type><title>Electrothermal technology of coating</title><source>IEEE Electronic Library (IEL)</source><creator>Shcolnikov, E.Ya ; Maslennikov, S.P. ; Netchaev, N.N. ; Nevolin, V.N. ; Sukhanova, L.A.</creator><creatorcontrib>Shcolnikov, E.Ya ; Maslennikov, S.P. ; Netchaev, N.N. ; Nevolin, V.N. ; Sukhanova, L.A.</creatorcontrib><description>A technique of microparticle acceleration by the shock-compressed gas region (SCGR) of the pulsed gas-plasma flow is used at the Moscow Engineering Physics Institute for the purpose of obtaining coatings out of powder materials by means of electrothermal launchers. As a result, microparticles are accelerated up to high velocities, the required temperature regime of the process being preserved. For SCGR formation, a new launcher structure has been developed. It has an additional cylindrical cavity, which is mounted in the initial part of the barrel behind the discharge gap and is connected with neighboring parts by conic transitions. The large space extension of the so-formed SCGR makes it possible to accelerate microparticles up to very high velocity (up to 2 km/s) and substantially widen the range of their dimensions (up to 50 /spl mu/m) and densities (up to 10/spl times/10/sup 3/ kg/m/sup 3/). Experimental tests and theoretical analysis on the basis of one- and two-dimensional models have shown that a dynamic effect existed which resulted in SCGR additional acceleration in the barrel. That effect increases the microparticle acceleration efficiency.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2002.805920</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Coatings ; Electrothermal effects ; Electrothermal launching ; Magnetism ; Physics ; Plasma accelerators ; Plasma materials processing ; Plasma temperature ; Powders ; Pulse generation ; Studies</subject><ispartof>IEEE transactions on magnetics, 2003-01, Vol.39 (1), p.314-318</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8812fceec70322ebb89e743bd115ca3362d094dbfe6a6db141a22d22a40f99713</citedby><cites>FETCH-LOGICAL-c319t-8812fceec70322ebb89e743bd115ca3362d094dbfe6a6db141a22d22a40f99713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1179833$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1179833$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shcolnikov, E.Ya</creatorcontrib><creatorcontrib>Maslennikov, S.P.</creatorcontrib><creatorcontrib>Netchaev, N.N.</creatorcontrib><creatorcontrib>Nevolin, V.N.</creatorcontrib><creatorcontrib>Sukhanova, L.A.</creatorcontrib><title>Electrothermal technology of coating</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>A technique of microparticle acceleration by the shock-compressed gas region (SCGR) of the pulsed gas-plasma flow is used at the Moscow Engineering Physics Institute for the purpose of obtaining coatings out of powder materials by means of electrothermal launchers. As a result, microparticles are accelerated up to high velocities, the required temperature regime of the process being preserved. For SCGR formation, a new launcher structure has been developed. It has an additional cylindrical cavity, which is mounted in the initial part of the barrel behind the discharge gap and is connected with neighboring parts by conic transitions. The large space extension of the so-formed SCGR makes it possible to accelerate microparticles up to very high velocity (up to 2 km/s) and substantially widen the range of their dimensions (up to 50 /spl mu/m) and densities (up to 10/spl times/10/sup 3/ kg/m/sup 3/). Experimental tests and theoretical analysis on the basis of one- and two-dimensional models have shown that a dynamic effect existed which resulted in SCGR additional acceleration in the barrel. That effect increases the microparticle acceleration efficiency.</description><subject>Acceleration</subject><subject>Coatings</subject><subject>Electrothermal effects</subject><subject>Electrothermal launching</subject><subject>Magnetism</subject><subject>Physics</subject><subject>Plasma accelerators</subject><subject>Plasma materials processing</subject><subject>Plasma temperature</subject><subject>Powders</subject><subject>Pulse generation</subject><subject>Studies</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLw0AQRhdRsFbvgpci4i11dnaT7B5LqVWoeKnnZbOZtClptu6mh_57UyIInoaB930zPMbuOUw5B_2y_pgtpwiAUwWpRrhgI64lTwAyfclGAFwlWmbymt3EuOtXmXIYsadFQ64LvttS2Ntm0pHbtr7xm9PEVxPnbVe3m1t2Vdkm0t3vHLOv18V6_pasPpfv89kqcYLrLlGKY-WIXA4CkYpCacqlKErOU2eFyLAELcuiosxmZcElt4glopVQaZ1zMWbPQ-8h-O8jxc7s6-ioaWxL_hgNKiEwR-zBx3_gzh9D2_9mlJJCZijSHoIBcsHHGKgyh1DvbTgZDubszJydmbMzMzjrIw9DpCaiP5znur8sfgA3_GYd</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>Shcolnikov, E.Ya</creator><creator>Maslennikov, S.P.</creator><creator>Netchaev, N.N.</creator><creator>Nevolin, V.N.</creator><creator>Sukhanova, L.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200301</creationdate><title>Electrothermal technology of coating</title><author>Shcolnikov, E.Ya ; Maslennikov, S.P. ; Netchaev, N.N. ; Nevolin, V.N. ; Sukhanova, L.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8812fceec70322ebb89e743bd115ca3362d094dbfe6a6db141a22d22a40f99713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acceleration</topic><topic>Coatings</topic><topic>Electrothermal effects</topic><topic>Electrothermal launching</topic><topic>Magnetism</topic><topic>Physics</topic><topic>Plasma accelerators</topic><topic>Plasma materials processing</topic><topic>Plasma temperature</topic><topic>Powders</topic><topic>Pulse generation</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Shcolnikov, E.Ya</creatorcontrib><creatorcontrib>Maslennikov, S.P.</creatorcontrib><creatorcontrib>Netchaev, N.N.</creatorcontrib><creatorcontrib>Nevolin, V.N.</creatorcontrib><creatorcontrib>Sukhanova, L.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shcolnikov, E.Ya</au><au>Maslennikov, S.P.</au><au>Netchaev, N.N.</au><au>Nevolin, V.N.</au><au>Sukhanova, L.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrothermal technology of coating</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2003-01</date><risdate>2003</risdate><volume>39</volume><issue>1</issue><spage>314</spage><epage>318</epage><pages>314-318</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A technique of microparticle acceleration by the shock-compressed gas region (SCGR) of the pulsed gas-plasma flow is used at the Moscow Engineering Physics Institute for the purpose of obtaining coatings out of powder materials by means of electrothermal launchers. As a result, microparticles are accelerated up to high velocities, the required temperature regime of the process being preserved. For SCGR formation, a new launcher structure has been developed. It has an additional cylindrical cavity, which is mounted in the initial part of the barrel behind the discharge gap and is connected with neighboring parts by conic transitions. The large space extension of the so-formed SCGR makes it possible to accelerate microparticles up to very high velocity (up to 2 km/s) and substantially widen the range of their dimensions (up to 50 /spl mu/m) and densities (up to 10/spl times/10/sup 3/ kg/m/sup 3/). Experimental tests and theoretical analysis on the basis of one- and two-dimensional models have shown that a dynamic effect existed which resulted in SCGR additional acceleration in the barrel. That effect increases the microparticle acceleration efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2002.805920</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2003-01, Vol.39 (1), p.314-318
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_1179833
source IEEE Electronic Library (IEL)
subjects Acceleration
Coatings
Electrothermal effects
Electrothermal launching
Magnetism
Physics
Plasma accelerators
Plasma materials processing
Plasma temperature
Powders
Pulse generation
Studies
title Electrothermal technology of coating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrothermal%20technology%20of%20coating&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Shcolnikov,%20E.Ya&rft.date=2003-01&rft.volume=39&rft.issue=1&rft.spage=314&rft.epage=318&rft.pages=314-318&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2002.805920&rft_dat=%3Cproquest_RIE%3E2429809501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884346235&rft_id=info:pmid/&rft_ieee_id=1179833&rfr_iscdi=true