Gate-diffusion input (GDI): a power-efficient method for digital combinatorial circuits

Gate diffusion input (GDI) - a new technique of low-power digital combinatorial circuit design - is described. This technique allows reducing power consumption, propagation delay, and area of digital circuits while maintaining low complexity of logic design. Performance comparison with traditional C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2002-10, Vol.10 (5), p.566-581
Hauptverfasser: Morgenshtein, A., Fish, A., Wagner, I.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 581
container_issue 5
container_start_page 566
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 10
creator Morgenshtein, A.
Fish, A.
Wagner, I.A.
description Gate diffusion input (GDI) - a new technique of low-power digital combinatorial circuit design - is described. This technique allows reducing power consumption, propagation delay, and area of digital circuits while maintaining low complexity of logic design. Performance comparison with traditional CMOS and various pass-transistor logic design techniques is presented. The different methods are compared with respect to the layout area, number of devices, delay, and power dissipation. Issues like technology compatibility, top-down design, and precomputing synthesis are discussed, showing advantages and drawbacks of GDI compared to other methods. Several logic circuits have been implemented in various design styles. Their properties are discussed, simulation results are reported, and measurements of a test chip are presented.
doi_str_mv 10.1109/TVLSI.2002.801578
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1178080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1178080</ieee_id><sourcerecordid>907954724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-7830eb882bd10119ab12da45a7b00bb266f0b312c908689e1160d9e2ad4451373</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhU1JoMmmP6D0YgJJmoM3M5JtSbmFpNksLOSQtD0KWZZaLV7LkWRK_3293YVADpnLzDDfezC8LPuMMEcEcfX8Y_W0nBMAMueAFeMfsiOsKlaIqQ6mGWpacILwMTuOcQ2AZSngKPu5UMkUrbN2jM73ueuHMeVfF3fLy-tc5YP_Y0JhrHXamT7lG5N--za3PuSt--WS6nLtN43rVfLBbTcX9OhSPMkOreqi-bTvs-z7_bfn24di9bhY3t6sCk05TQXjFEzDOWlaBEShGiStKivFGoCmIXVtoaFItABec2EQa2iFIaotywopo7PsYuc7BP8ympjkxkVtuk71xo9RCmCiKhkpJ_L8XZJwShit6QSevgHXfgz99IUUhALlgm4h3EE6-BiDsXIIbqPCX4kgt4nI_4nIbSJyl8ikOdsbq6hVZ4PqtYuvwrIiomJk4r7sOGeMeT0j48CB_gN62ZJ2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923038933</pqid></control><display><type>article</type><title>Gate-diffusion input (GDI): a power-efficient method for digital combinatorial circuits</title><source>IEEE Electronic Library (IEL)</source><creator>Morgenshtein, A. ; Fish, A. ; Wagner, I.A.</creator><creatorcontrib>Morgenshtein, A. ; Fish, A. ; Wagner, I.A.</creatorcontrib><description>Gate diffusion input (GDI) - a new technique of low-power digital combinatorial circuit design - is described. This technique allows reducing power consumption, propagation delay, and area of digital circuits while maintaining low complexity of logic design. Performance comparison with traditional CMOS and various pass-transistor logic design techniques is presented. The different methods are compared with respect to the layout area, number of devices, delay, and power dissipation. Issues like technology compatibility, top-down design, and precomputing synthesis are discussed, showing advantages and drawbacks of GDI compared to other methods. Several logic circuits have been implemented in various design styles. Their properties are discussed, simulation results are reported, and measurements of a test chip are presented.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2002.801578</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Circuit design ; Circuit properties ; Circuit simulation ; Circuit synthesis ; CMOS technology ; Combinatorial analysis ; Delay ; Design engineering ; Design. Technologies. Operation analysis. Testing ; Digital ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Energy consumption ; Exact sciences and technology ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Logic circuits ; Logic design ; Power dissipation ; Propagation delay ; Semiconductor device measurement ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Transistors ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2002-10, Vol.10 (5), p.566-581</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-7830eb882bd10119ab12da45a7b00bb266f0b312c908689e1160d9e2ad4451373</citedby><cites>FETCH-LOGICAL-c383t-7830eb882bd10119ab12da45a7b00bb266f0b312c908689e1160d9e2ad4451373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1178080$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1178080$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14529572$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Morgenshtein, A.</creatorcontrib><creatorcontrib>Fish, A.</creatorcontrib><creatorcontrib>Wagner, I.A.</creatorcontrib><title>Gate-diffusion input (GDI): a power-efficient method for digital combinatorial circuits</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Gate diffusion input (GDI) - a new technique of low-power digital combinatorial circuit design - is described. This technique allows reducing power consumption, propagation delay, and area of digital circuits while maintaining low complexity of logic design. Performance comparison with traditional CMOS and various pass-transistor logic design techniques is presented. The different methods are compared with respect to the layout area, number of devices, delay, and power dissipation. Issues like technology compatibility, top-down design, and precomputing synthesis are discussed, showing advantages and drawbacks of GDI compared to other methods. Several logic circuits have been implemented in various design styles. Their properties are discussed, simulation results are reported, and measurements of a test chip are presented.</description><subject>Applied sciences</subject><subject>Circuit design</subject><subject>Circuit properties</subject><subject>Circuit simulation</subject><subject>Circuit synthesis</subject><subject>CMOS technology</subject><subject>Combinatorial analysis</subject><subject>Delay</subject><subject>Design engineering</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Digital</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Energy consumption</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Logic circuits</subject><subject>Logic design</subject><subject>Power dissipation</subject><subject>Propagation delay</subject><subject>Semiconductor device measurement</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Transistors</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFr3DAQhU1JoMmmP6D0YgJJmoM3M5JtSbmFpNksLOSQtD0KWZZaLV7LkWRK_3293YVADpnLzDDfezC8LPuMMEcEcfX8Y_W0nBMAMueAFeMfsiOsKlaIqQ6mGWpacILwMTuOcQ2AZSngKPu5UMkUrbN2jM73ueuHMeVfF3fLy-tc5YP_Y0JhrHXamT7lG5N--za3PuSt--WS6nLtN43rVfLBbTcX9OhSPMkOreqi-bTvs-z7_bfn24di9bhY3t6sCk05TQXjFEzDOWlaBEShGiStKivFGoCmIXVtoaFItABec2EQa2iFIaotywopo7PsYuc7BP8ympjkxkVtuk71xo9RCmCiKhkpJ_L8XZJwShit6QSevgHXfgz99IUUhALlgm4h3EE6-BiDsXIIbqPCX4kgt4nI_4nIbSJyl8ikOdsbq6hVZ4PqtYuvwrIiomJk4r7sOGeMeT0j48CB_gN62ZJ2</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Morgenshtein, A.</creator><creator>Fish, A.</creator><creator>Wagner, I.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20021001</creationdate><title>Gate-diffusion input (GDI): a power-efficient method for digital combinatorial circuits</title><author>Morgenshtein, A. ; Fish, A. ; Wagner, I.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-7830eb882bd10119ab12da45a7b00bb266f0b312c908689e1160d9e2ad4451373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Circuit design</topic><topic>Circuit properties</topic><topic>Circuit simulation</topic><topic>Circuit synthesis</topic><topic>CMOS technology</topic><topic>Combinatorial analysis</topic><topic>Delay</topic><topic>Design engineering</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Digital</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Energy consumption</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Logic circuits</topic><topic>Logic design</topic><topic>Power dissipation</topic><topic>Propagation delay</topic><topic>Semiconductor device measurement</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Transistors</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morgenshtein, A.</creatorcontrib><creatorcontrib>Fish, A.</creatorcontrib><creatorcontrib>Wagner, I.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morgenshtein, A.</au><au>Fish, A.</au><au>Wagner, I.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate-diffusion input (GDI): a power-efficient method for digital combinatorial circuits</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2002-10-01</date><risdate>2002</risdate><volume>10</volume><issue>5</issue><spage>566</spage><epage>581</epage><pages>566-581</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Gate diffusion input (GDI) - a new technique of low-power digital combinatorial circuit design - is described. This technique allows reducing power consumption, propagation delay, and area of digital circuits while maintaining low complexity of logic design. Performance comparison with traditional CMOS and various pass-transistor logic design techniques is presented. The different methods are compared with respect to the layout area, number of devices, delay, and power dissipation. Issues like technology compatibility, top-down design, and precomputing synthesis are discussed, showing advantages and drawbacks of GDI compared to other methods. Several logic circuits have been implemented in various design styles. Their properties are discussed, simulation results are reported, and measurements of a test chip are presented.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2002.801578</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2002-10, Vol.10 (5), p.566-581
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_1178080
source IEEE Electronic Library (IEL)
subjects Applied sciences
Circuit design
Circuit properties
Circuit simulation
Circuit synthesis
CMOS technology
Combinatorial analysis
Delay
Design engineering
Design. Technologies. Operation analysis. Testing
Digital
Digital circuits
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Energy consumption
Exact sciences and technology
Integrated circuits
Integrated circuits by function (including memories and processors)
Logic circuits
Logic design
Power dissipation
Propagation delay
Semiconductor device measurement
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Transistors
Very large scale integration
title Gate-diffusion input (GDI): a power-efficient method for digital combinatorial circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate-diffusion%20input%20(GDI):%20a%20power-efficient%20method%20for%20digital%20combinatorial%20circuits&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Morgenshtein,%20A.&rft.date=2002-10-01&rft.volume=10&rft.issue=5&rft.spage=566&rft.epage=581&rft.pages=566-581&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2002.801578&rft_dat=%3Cproquest_RIE%3E907954724%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923038933&rft_id=info:pmid/&rft_ieee_id=1178080&rfr_iscdi=true