Entropy and the timing capacity of discrete queues
Queueing systems which map Poisson input processes to Poisson output processes have been well-studied in classical queueing theory. This paper considers two discrete-time queues whose analogs in continuous-time possess the Poisson-in-Poisson-out property. It is shown that when packets arriving accor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2003-02, Vol.49 (2), p.357-370 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 370 |
---|---|
container_issue | 2 |
container_start_page | 357 |
container_title | IEEE transactions on information theory |
container_volume | 49 |
creator | Prabhakar, B. Gallager, R. |
description | Queueing systems which map Poisson input processes to Poisson output processes have been well-studied in classical queueing theory. This paper considers two discrete-time queues whose analogs in continuous-time possess the Poisson-in-Poisson-out property. It is shown that when packets arriving according to an arbitrary ergodic stationary arrival process are passed through these queueing systems, the corresponding departure process has an entropy rate no less (some times strictly more) than the entropy rate of the arrival process. Some useful by-products are discrete-time versions of: (i) a proof of the celebrated Burke's (1956) theorem, (ii) a proof of the uniqueness, amongst renewal inputs, of the Poisson process as a fixed point for exponential server queues proposed by Anantharam (1993), and (iii) connections with the timing capacity of queues described by Anantharam and Verdu (1996). |
doi_str_mv | 10.1109/TIT.2002.807287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1176611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1176611</ieee_id><sourcerecordid>28476447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-ac208673c543f89336f78da158c436c1183f9f9cd3a0cc89ac0ad20124f18ec73</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKtnD16CB2_bZvKdo5SqhYKXeg4hm-iWdndNsof-e7esIHgaBp535uVB6B7IAoCY5W6zW1BC6EITRbW6QDMQQlVGCn6JZoSArgzn-hrd5LwfVy6AzhBdtyV1_Qm7tsblK-DSHJv2E3vXO9-UE-4irpvsUygBfw9hCPkWXUV3yOHud87Rx8t6t3qrtu-vm9XztvKc8lI5T4mWinnBWdSGMRmVrh0I7TmTHkCzaKLxNXPEe22cJ66mBCiPoINXbI6eprt96sbPudjjWCQcDq4N3ZAt1VxJzs_g4z9w3w2pHbtZMEJrQ6kZoeUE-dTlnEK0fWqOLp0sEHsWaEeB9izQTgLHxMOUaEIIfzQoKQHYD80zamY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195889229</pqid></control><display><type>article</type><title>Entropy and the timing capacity of discrete queues</title><source>IEEE Electronic Library (IEL)</source><creator>Prabhakar, B. ; Gallager, R.</creator><creatorcontrib>Prabhakar, B. ; Gallager, R.</creatorcontrib><description>Queueing systems which map Poisson input processes to Poisson output processes have been well-studied in classical queueing theory. This paper considers two discrete-time queues whose analogs in continuous-time possess the Poisson-in-Poisson-out property. It is shown that when packets arriving according to an arbitrary ergodic stationary arrival process are passed through these queueing systems, the corresponding departure process has an entropy rate no less (some times strictly more) than the entropy rate of the arrival process. Some useful by-products are discrete-time versions of: (i) a proof of the celebrated Burke's (1956) theorem, (ii) a proof of the uniqueness, amongst renewal inputs, of the Poisson process as a fixed point for exponential server queues proposed by Anantharam (1993), and (iii) connections with the timing capacity of queues described by Anantharam and Verdu (1996).</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2002.807287</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Communication networks ; Decoding ; Entropy ; Information ; Information theory ; Network servers ; Queueing analysis ; Resumes ; Telecommunication traffic ; Theory ; Time ; Timing ; Traffic control</subject><ispartof>IEEE transactions on information theory, 2003-02, Vol.49 (2), p.357-370</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-ac208673c543f89336f78da158c436c1183f9f9cd3a0cc89ac0ad20124f18ec73</citedby><cites>FETCH-LOGICAL-c424t-ac208673c543f89336f78da158c436c1183f9f9cd3a0cc89ac0ad20124f18ec73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1176611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1176611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Prabhakar, B.</creatorcontrib><creatorcontrib>Gallager, R.</creatorcontrib><title>Entropy and the timing capacity of discrete queues</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Queueing systems which map Poisson input processes to Poisson output processes have been well-studied in classical queueing theory. This paper considers two discrete-time queues whose analogs in continuous-time possess the Poisson-in-Poisson-out property. It is shown that when packets arriving according to an arbitrary ergodic stationary arrival process are passed through these queueing systems, the corresponding departure process has an entropy rate no less (some times strictly more) than the entropy rate of the arrival process. Some useful by-products are discrete-time versions of: (i) a proof of the celebrated Burke's (1956) theorem, (ii) a proof of the uniqueness, amongst renewal inputs, of the Poisson process as a fixed point for exponential server queues proposed by Anantharam (1993), and (iii) connections with the timing capacity of queues described by Anantharam and Verdu (1996).</description><subject>Communication networks</subject><subject>Decoding</subject><subject>Entropy</subject><subject>Information</subject><subject>Information theory</subject><subject>Network servers</subject><subject>Queueing analysis</subject><subject>Resumes</subject><subject>Telecommunication traffic</subject><subject>Theory</subject><subject>Time</subject><subject>Timing</subject><subject>Traffic control</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKtnD16CB2_bZvKdo5SqhYKXeg4hm-iWdndNsof-e7esIHgaBp535uVB6B7IAoCY5W6zW1BC6EITRbW6QDMQQlVGCn6JZoSArgzn-hrd5LwfVy6AzhBdtyV1_Qm7tsblK-DSHJv2E3vXO9-UE-4irpvsUygBfw9hCPkWXUV3yOHud87Rx8t6t3qrtu-vm9XztvKc8lI5T4mWinnBWdSGMRmVrh0I7TmTHkCzaKLxNXPEe22cJ66mBCiPoINXbI6eprt96sbPudjjWCQcDq4N3ZAt1VxJzs_g4z9w3w2pHbtZMEJrQ6kZoeUE-dTlnEK0fWqOLp0sEHsWaEeB9izQTgLHxMOUaEIIfzQoKQHYD80zamY</recordid><startdate>200302</startdate><enddate>200302</enddate><creator>Prabhakar, B.</creator><creator>Gallager, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200302</creationdate><title>Entropy and the timing capacity of discrete queues</title><author>Prabhakar, B. ; Gallager, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-ac208673c543f89336f78da158c436c1183f9f9cd3a0cc89ac0ad20124f18ec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Communication networks</topic><topic>Decoding</topic><topic>Entropy</topic><topic>Information</topic><topic>Information theory</topic><topic>Network servers</topic><topic>Queueing analysis</topic><topic>Resumes</topic><topic>Telecommunication traffic</topic><topic>Theory</topic><topic>Time</topic><topic>Timing</topic><topic>Traffic control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prabhakar, B.</creatorcontrib><creatorcontrib>Gallager, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prabhakar, B.</au><au>Gallager, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy and the timing capacity of discrete queues</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2003-02</date><risdate>2003</risdate><volume>49</volume><issue>2</issue><spage>357</spage><epage>370</epage><pages>357-370</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Queueing systems which map Poisson input processes to Poisson output processes have been well-studied in classical queueing theory. This paper considers two discrete-time queues whose analogs in continuous-time possess the Poisson-in-Poisson-out property. It is shown that when packets arriving according to an arbitrary ergodic stationary arrival process are passed through these queueing systems, the corresponding departure process has an entropy rate no less (some times strictly more) than the entropy rate of the arrival process. Some useful by-products are discrete-time versions of: (i) a proof of the celebrated Burke's (1956) theorem, (ii) a proof of the uniqueness, amongst renewal inputs, of the Poisson process as a fixed point for exponential server queues proposed by Anantharam (1993), and (iii) connections with the timing capacity of queues described by Anantharam and Verdu (1996).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2002.807287</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2003-02, Vol.49 (2), p.357-370 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_1176611 |
source | IEEE Electronic Library (IEL) |
subjects | Communication networks Decoding Entropy Information Information theory Network servers Queueing analysis Resumes Telecommunication traffic Theory Time Timing Traffic control |
title | Entropy and the timing capacity of discrete queues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20and%20the%20timing%20capacity%20of%20discrete%20queues&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Prabhakar,%20B.&rft.date=2003-02&rft.volume=49&rft.issue=2&rft.spage=357&rft.epage=370&rft.pages=357-370&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2002.807287&rft_dat=%3Cproquest_RIE%3E28476447%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195889229&rft_id=info:pmid/&rft_ieee_id=1176611&rfr_iscdi=true |