Entropy and the timing capacity of discrete queues

Queueing systems which map Poisson input processes to Poisson output processes have been well-studied in classical queueing theory. This paper considers two discrete-time queues whose analogs in continuous-time possess the Poisson-in-Poisson-out property. It is shown that when packets arriving accor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2003-02, Vol.49 (2), p.357-370
Hauptverfasser: Prabhakar, B., Gallager, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue 2
container_start_page 357
container_title IEEE transactions on information theory
container_volume 49
creator Prabhakar, B.
Gallager, R.
description Queueing systems which map Poisson input processes to Poisson output processes have been well-studied in classical queueing theory. This paper considers two discrete-time queues whose analogs in continuous-time possess the Poisson-in-Poisson-out property. It is shown that when packets arriving according to an arbitrary ergodic stationary arrival process are passed through these queueing systems, the corresponding departure process has an entropy rate no less (some times strictly more) than the entropy rate of the arrival process. Some useful by-products are discrete-time versions of: (i) a proof of the celebrated Burke's (1956) theorem, (ii) a proof of the uniqueness, amongst renewal inputs, of the Poisson process as a fixed point for exponential server queues proposed by Anantharam (1993), and (iii) connections with the timing capacity of queues described by Anantharam and Verdu (1996).
doi_str_mv 10.1109/TIT.2002.807287
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1176611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1176611</ieee_id><sourcerecordid>28476447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-ac208673c543f89336f78da158c436c1183f9f9cd3a0cc89ac0ad20124f18ec73</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKtnD16CB2_bZvKdo5SqhYKXeg4hm-iWdndNsof-e7esIHgaBp535uVB6B7IAoCY5W6zW1BC6EITRbW6QDMQQlVGCn6JZoSArgzn-hrd5LwfVy6AzhBdtyV1_Qm7tsblK-DSHJv2E3vXO9-UE-4irpvsUygBfw9hCPkWXUV3yOHud87Rx8t6t3qrtu-vm9XztvKc8lI5T4mWinnBWdSGMRmVrh0I7TmTHkCzaKLxNXPEe22cJ66mBCiPoINXbI6eprt96sbPudjjWCQcDq4N3ZAt1VxJzs_g4z9w3w2pHbtZMEJrQ6kZoeUE-dTlnEK0fWqOLp0sEHsWaEeB9izQTgLHxMOUaEIIfzQoKQHYD80zamY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195889229</pqid></control><display><type>article</type><title>Entropy and the timing capacity of discrete queues</title><source>IEEE Electronic Library (IEL)</source><creator>Prabhakar, B. ; Gallager, R.</creator><creatorcontrib>Prabhakar, B. ; Gallager, R.</creatorcontrib><description>Queueing systems which map Poisson input processes to Poisson output processes have been well-studied in classical queueing theory. This paper considers two discrete-time queues whose analogs in continuous-time possess the Poisson-in-Poisson-out property. It is shown that when packets arriving according to an arbitrary ergodic stationary arrival process are passed through these queueing systems, the corresponding departure process has an entropy rate no less (some times strictly more) than the entropy rate of the arrival process. Some useful by-products are discrete-time versions of: (i) a proof of the celebrated Burke's (1956) theorem, (ii) a proof of the uniqueness, amongst renewal inputs, of the Poisson process as a fixed point for exponential server queues proposed by Anantharam (1993), and (iii) connections with the timing capacity of queues described by Anantharam and Verdu (1996).</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2002.807287</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Communication networks ; Decoding ; Entropy ; Information ; Information theory ; Network servers ; Queueing analysis ; Resumes ; Telecommunication traffic ; Theory ; Time ; Timing ; Traffic control</subject><ispartof>IEEE transactions on information theory, 2003-02, Vol.49 (2), p.357-370</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-ac208673c543f89336f78da158c436c1183f9f9cd3a0cc89ac0ad20124f18ec73</citedby><cites>FETCH-LOGICAL-c424t-ac208673c543f89336f78da158c436c1183f9f9cd3a0cc89ac0ad20124f18ec73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1176611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1176611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Prabhakar, B.</creatorcontrib><creatorcontrib>Gallager, R.</creatorcontrib><title>Entropy and the timing capacity of discrete queues</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Queueing systems which map Poisson input processes to Poisson output processes have been well-studied in classical queueing theory. This paper considers two discrete-time queues whose analogs in continuous-time possess the Poisson-in-Poisson-out property. It is shown that when packets arriving according to an arbitrary ergodic stationary arrival process are passed through these queueing systems, the corresponding departure process has an entropy rate no less (some times strictly more) than the entropy rate of the arrival process. Some useful by-products are discrete-time versions of: (i) a proof of the celebrated Burke's (1956) theorem, (ii) a proof of the uniqueness, amongst renewal inputs, of the Poisson process as a fixed point for exponential server queues proposed by Anantharam (1993), and (iii) connections with the timing capacity of queues described by Anantharam and Verdu (1996).</description><subject>Communication networks</subject><subject>Decoding</subject><subject>Entropy</subject><subject>Information</subject><subject>Information theory</subject><subject>Network servers</subject><subject>Queueing analysis</subject><subject>Resumes</subject><subject>Telecommunication traffic</subject><subject>Theory</subject><subject>Time</subject><subject>Timing</subject><subject>Traffic control</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKtnD16CB2_bZvKdo5SqhYKXeg4hm-iWdndNsof-e7esIHgaBp535uVB6B7IAoCY5W6zW1BC6EITRbW6QDMQQlVGCn6JZoSArgzn-hrd5LwfVy6AzhBdtyV1_Qm7tsblK-DSHJv2E3vXO9-UE-4irpvsUygBfw9hCPkWXUV3yOHud87Rx8t6t3qrtu-vm9XztvKc8lI5T4mWinnBWdSGMRmVrh0I7TmTHkCzaKLxNXPEe22cJ66mBCiPoINXbI6eprt96sbPudjjWCQcDq4N3ZAt1VxJzs_g4z9w3w2pHbtZMEJrQ6kZoeUE-dTlnEK0fWqOLp0sEHsWaEeB9izQTgLHxMOUaEIIfzQoKQHYD80zamY</recordid><startdate>200302</startdate><enddate>200302</enddate><creator>Prabhakar, B.</creator><creator>Gallager, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200302</creationdate><title>Entropy and the timing capacity of discrete queues</title><author>Prabhakar, B. ; Gallager, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-ac208673c543f89336f78da158c436c1183f9f9cd3a0cc89ac0ad20124f18ec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Communication networks</topic><topic>Decoding</topic><topic>Entropy</topic><topic>Information</topic><topic>Information theory</topic><topic>Network servers</topic><topic>Queueing analysis</topic><topic>Resumes</topic><topic>Telecommunication traffic</topic><topic>Theory</topic><topic>Time</topic><topic>Timing</topic><topic>Traffic control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prabhakar, B.</creatorcontrib><creatorcontrib>Gallager, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prabhakar, B.</au><au>Gallager, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy and the timing capacity of discrete queues</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2003-02</date><risdate>2003</risdate><volume>49</volume><issue>2</issue><spage>357</spage><epage>370</epage><pages>357-370</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Queueing systems which map Poisson input processes to Poisson output processes have been well-studied in classical queueing theory. This paper considers two discrete-time queues whose analogs in continuous-time possess the Poisson-in-Poisson-out property. It is shown that when packets arriving according to an arbitrary ergodic stationary arrival process are passed through these queueing systems, the corresponding departure process has an entropy rate no less (some times strictly more) than the entropy rate of the arrival process. Some useful by-products are discrete-time versions of: (i) a proof of the celebrated Burke's (1956) theorem, (ii) a proof of the uniqueness, amongst renewal inputs, of the Poisson process as a fixed point for exponential server queues proposed by Anantharam (1993), and (iii) connections with the timing capacity of queues described by Anantharam and Verdu (1996).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2002.807287</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2003-02, Vol.49 (2), p.357-370
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_1176611
source IEEE Electronic Library (IEL)
subjects Communication networks
Decoding
Entropy
Information
Information theory
Network servers
Queueing analysis
Resumes
Telecommunication traffic
Theory
Time
Timing
Traffic control
title Entropy and the timing capacity of discrete queues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20and%20the%20timing%20capacity%20of%20discrete%20queues&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Prabhakar,%20B.&rft.date=2003-02&rft.volume=49&rft.issue=2&rft.spage=357&rft.epage=370&rft.pages=357-370&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2002.807287&rft_dat=%3Cproquest_RIE%3E28476447%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195889229&rft_id=info:pmid/&rft_ieee_id=1176611&rfr_iscdi=true