FinFET scaling to 10 nm gate length

While the selection of new "backbone" device structure in the era of post-planar CMOS is open to a few candidates, FinFET and its variants show great potential in scalability and manufacturability for nanoscale CMOS. In this paper we report the design, fabrication, performance, and integra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bin Yu, Leland Chang, Ahmed, S., Haihong Wang, Bell, S., Chih-Yuh Yang, Tabery, C., Chau Ho, Qi Xiang, Tsu-Jae King, Bokor, J., Chenming Hu, Ming-Ren Lin, Kyser, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue
container_start_page 251
container_title
container_volume
creator Bin Yu
Leland Chang
Ahmed, S.
Haihong Wang
Bell, S.
Chih-Yuh Yang
Tabery, C.
Chau Ho
Qi Xiang
Tsu-Jae King
Bokor, J.
Chenming Hu
Ming-Ren Lin
Kyser, D.
description While the selection of new "backbone" device structure in the era of post-planar CMOS is open to a few candidates, FinFET and its variants show great potential in scalability and manufacturability for nanoscale CMOS. In this paper we report the design, fabrication, performance, and integration issues of double-gate FinFETs with the physical gate length being aggressively shrunk down to 10 nm and the fin width down to 12 nm. These MOSFETs are believed to be the smallest double-gate transistors ever fabricated. Excellent short-channel performance is observed in devices with a wide range of gate lengths (10/spl sim/105 nm). The observed short-channel behavior outperforms any reported single-gate silicon MOSFETs. Due to the [110] channel crystal orientation, hole mobility in the fabricated p-channel FinFET exceeds greatly that in a traditional planar MOSFET. At 105 nm gate length, the p-channel FinFET shows a record-high transconductance of 633 /spl mu/S//spl mu/m at a V/sub dd/ of 1.2 V. Working CMOS FinFET inverters are also demonstrated.
doi_str_mv 10.1109/IEDM.2002.1175825
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1175825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1175825</ieee_id><sourcerecordid>1175825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-93c3928f4bbd95c20dd7f8fdce974c45fe138d6a6ae78c9d2560c455466a235b3</originalsourceid><addsrcrecordid>eNotT01Lw0AUXCiCUvMDipcFz6lv9-3XO0pttVDppT2XzX7ElDRKk4v_3gU7DAwzMAPD2ELAUgigl-367XMpAWSxVjupZ6wi66AQrTJS3LNqHM9QgKSQ9AN73nTDZn3gY_B9N7R8-uYC-HDhrZ8S79PQTl-P7C77fkzVTefsWCqrj3q3f9-uXnd1EE5NNWFAki6rpomkg4QYbXY5hkRWBaVzEuii8cYn6wJFqQ2UWCtjvETd4Jw9_e92KaXTz7W7-Ovv6XYF_wCY2zwy</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>FinFET scaling to 10 nm gate length</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bin Yu ; Leland Chang ; Ahmed, S. ; Haihong Wang ; Bell, S. ; Chih-Yuh Yang ; Tabery, C. ; Chau Ho ; Qi Xiang ; Tsu-Jae King ; Bokor, J. ; Chenming Hu ; Ming-Ren Lin ; Kyser, D.</creator><creatorcontrib>Bin Yu ; Leland Chang ; Ahmed, S. ; Haihong Wang ; Bell, S. ; Chih-Yuh Yang ; Tabery, C. ; Chau Ho ; Qi Xiang ; Tsu-Jae King ; Bokor, J. ; Chenming Hu ; Ming-Ren Lin ; Kyser, D.</creatorcontrib><description>While the selection of new "backbone" device structure in the era of post-planar CMOS is open to a few candidates, FinFET and its variants show great potential in scalability and manufacturability for nanoscale CMOS. In this paper we report the design, fabrication, performance, and integration issues of double-gate FinFETs with the physical gate length being aggressively shrunk down to 10 nm and the fin width down to 12 nm. These MOSFETs are believed to be the smallest double-gate transistors ever fabricated. Excellent short-channel performance is observed in devices with a wide range of gate lengths (10/spl sim/105 nm). The observed short-channel behavior outperforms any reported single-gate silicon MOSFETs. Due to the [110] channel crystal orientation, hole mobility in the fabricated p-channel FinFET exceeds greatly that in a traditional planar MOSFET. At 105 nm gate length, the p-channel FinFET shows a record-high transconductance of 633 /spl mu/S//spl mu/m at a V/sub dd/ of 1.2 V. Working CMOS FinFET inverters are also demonstrated.</description><identifier>ISBN: 9780780374621</identifier><identifier>ISBN: 0780374622</identifier><identifier>DOI: 10.1109/IEDM.2002.1175825</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fabrication ; FinFETs ; Inverters ; Manufacturing ; MOSFETs ; Nanoscale devices ; Scalability ; Silicon ; Spine ; Transconductance</subject><ispartof>Digest. International Electron Devices Meeting, 2002, p.251-254</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c184t-93c3928f4bbd95c20dd7f8fdce974c45fe138d6a6ae78c9d2560c455466a235b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1175825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1175825$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bin Yu</creatorcontrib><creatorcontrib>Leland Chang</creatorcontrib><creatorcontrib>Ahmed, S.</creatorcontrib><creatorcontrib>Haihong Wang</creatorcontrib><creatorcontrib>Bell, S.</creatorcontrib><creatorcontrib>Chih-Yuh Yang</creatorcontrib><creatorcontrib>Tabery, C.</creatorcontrib><creatorcontrib>Chau Ho</creatorcontrib><creatorcontrib>Qi Xiang</creatorcontrib><creatorcontrib>Tsu-Jae King</creatorcontrib><creatorcontrib>Bokor, J.</creatorcontrib><creatorcontrib>Chenming Hu</creatorcontrib><creatorcontrib>Ming-Ren Lin</creatorcontrib><creatorcontrib>Kyser, D.</creatorcontrib><title>FinFET scaling to 10 nm gate length</title><title>Digest. International Electron Devices Meeting</title><addtitle>IEDM</addtitle><description>While the selection of new "backbone" device structure in the era of post-planar CMOS is open to a few candidates, FinFET and its variants show great potential in scalability and manufacturability for nanoscale CMOS. In this paper we report the design, fabrication, performance, and integration issues of double-gate FinFETs with the physical gate length being aggressively shrunk down to 10 nm and the fin width down to 12 nm. These MOSFETs are believed to be the smallest double-gate transistors ever fabricated. Excellent short-channel performance is observed in devices with a wide range of gate lengths (10/spl sim/105 nm). The observed short-channel behavior outperforms any reported single-gate silicon MOSFETs. Due to the [110] channel crystal orientation, hole mobility in the fabricated p-channel FinFET exceeds greatly that in a traditional planar MOSFET. At 105 nm gate length, the p-channel FinFET shows a record-high transconductance of 633 /spl mu/S//spl mu/m at a V/sub dd/ of 1.2 V. Working CMOS FinFET inverters are also demonstrated.</description><subject>Fabrication</subject><subject>FinFETs</subject><subject>Inverters</subject><subject>Manufacturing</subject><subject>MOSFETs</subject><subject>Nanoscale devices</subject><subject>Scalability</subject><subject>Silicon</subject><subject>Spine</subject><subject>Transconductance</subject><isbn>9780780374621</isbn><isbn>0780374622</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT01Lw0AUXCiCUvMDipcFz6lv9-3XO0pttVDppT2XzX7ElDRKk4v_3gU7DAwzMAPD2ELAUgigl-367XMpAWSxVjupZ6wi66AQrTJS3LNqHM9QgKSQ9AN73nTDZn3gY_B9N7R8-uYC-HDhrZ8S79PQTl-P7C77fkzVTefsWCqrj3q3f9-uXnd1EE5NNWFAki6rpomkg4QYbXY5hkRWBaVzEuii8cYn6wJFqQ2UWCtjvETd4Jw9_e92KaXTz7W7-Ovv6XYF_wCY2zwy</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Bin Yu</creator><creator>Leland Chang</creator><creator>Ahmed, S.</creator><creator>Haihong Wang</creator><creator>Bell, S.</creator><creator>Chih-Yuh Yang</creator><creator>Tabery, C.</creator><creator>Chau Ho</creator><creator>Qi Xiang</creator><creator>Tsu-Jae King</creator><creator>Bokor, J.</creator><creator>Chenming Hu</creator><creator>Ming-Ren Lin</creator><creator>Kyser, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>FinFET scaling to 10 nm gate length</title><author>Bin Yu ; Leland Chang ; Ahmed, S. ; Haihong Wang ; Bell, S. ; Chih-Yuh Yang ; Tabery, C. ; Chau Ho ; Qi Xiang ; Tsu-Jae King ; Bokor, J. ; Chenming Hu ; Ming-Ren Lin ; Kyser, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-93c3928f4bbd95c20dd7f8fdce974c45fe138d6a6ae78c9d2560c455466a235b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Fabrication</topic><topic>FinFETs</topic><topic>Inverters</topic><topic>Manufacturing</topic><topic>MOSFETs</topic><topic>Nanoscale devices</topic><topic>Scalability</topic><topic>Silicon</topic><topic>Spine</topic><topic>Transconductance</topic><toplevel>online_resources</toplevel><creatorcontrib>Bin Yu</creatorcontrib><creatorcontrib>Leland Chang</creatorcontrib><creatorcontrib>Ahmed, S.</creatorcontrib><creatorcontrib>Haihong Wang</creatorcontrib><creatorcontrib>Bell, S.</creatorcontrib><creatorcontrib>Chih-Yuh Yang</creatorcontrib><creatorcontrib>Tabery, C.</creatorcontrib><creatorcontrib>Chau Ho</creatorcontrib><creatorcontrib>Qi Xiang</creatorcontrib><creatorcontrib>Tsu-Jae King</creatorcontrib><creatorcontrib>Bokor, J.</creatorcontrib><creatorcontrib>Chenming Hu</creatorcontrib><creatorcontrib>Ming-Ren Lin</creatorcontrib><creatorcontrib>Kyser, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bin Yu</au><au>Leland Chang</au><au>Ahmed, S.</au><au>Haihong Wang</au><au>Bell, S.</au><au>Chih-Yuh Yang</au><au>Tabery, C.</au><au>Chau Ho</au><au>Qi Xiang</au><au>Tsu-Jae King</au><au>Bokor, J.</au><au>Chenming Hu</au><au>Ming-Ren Lin</au><au>Kyser, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>FinFET scaling to 10 nm gate length</atitle><btitle>Digest. International Electron Devices Meeting</btitle><stitle>IEDM</stitle><date>2002</date><risdate>2002</risdate><spage>251</spage><epage>254</epage><pages>251-254</pages><isbn>9780780374621</isbn><isbn>0780374622</isbn><abstract>While the selection of new "backbone" device structure in the era of post-planar CMOS is open to a few candidates, FinFET and its variants show great potential in scalability and manufacturability for nanoscale CMOS. In this paper we report the design, fabrication, performance, and integration issues of double-gate FinFETs with the physical gate length being aggressively shrunk down to 10 nm and the fin width down to 12 nm. These MOSFETs are believed to be the smallest double-gate transistors ever fabricated. Excellent short-channel performance is observed in devices with a wide range of gate lengths (10/spl sim/105 nm). The observed short-channel behavior outperforms any reported single-gate silicon MOSFETs. Due to the [110] channel crystal orientation, hole mobility in the fabricated p-channel FinFET exceeds greatly that in a traditional planar MOSFET. At 105 nm gate length, the p-channel FinFET shows a record-high transconductance of 633 /spl mu/S//spl mu/m at a V/sub dd/ of 1.2 V. Working CMOS FinFET inverters are also demonstrated.</abstract><pub>IEEE</pub><doi>10.1109/IEDM.2002.1175825</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780374621
ispartof Digest. International Electron Devices Meeting, 2002, p.251-254
issn
language eng
recordid cdi_ieee_primary_1175825
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Fabrication
FinFETs
Inverters
Manufacturing
MOSFETs
Nanoscale devices
Scalability
Silicon
Spine
Transconductance
title FinFET scaling to 10 nm gate length
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=FinFET%20scaling%20to%2010%20nm%20gate%20length&rft.btitle=Digest.%20International%20Electron%20Devices%20Meeting&rft.au=Bin%20Yu&rft.date=2002&rft.spage=251&rft.epage=254&rft.pages=251-254&rft.isbn=9780780374621&rft.isbn_list=0780374622&rft_id=info:doi/10.1109/IEDM.2002.1175825&rft_dat=%3Cieee_6IE%3E1175825%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1175825&rfr_iscdi=true