Medical image series segmentation using watershed transform and active contour model

In this paper, a semiautomatic algorithm based on the combination of the live wire algorithm and the active contour model is proposed for the segmentation of medical image series. First we obtain accurate segmentation of one or more slices in a medical image series by combining the livewire algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fu-Ping Zhu, Jie Tian, Xi-Ping Luo, Xing-Fei Ge
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 870 vol.2
container_issue
container_start_page 865
container_title
container_volume 2
creator Fu-Ping Zhu
Jie Tian
Xi-Ping Luo
Xing-Fei Ge
description In this paper, a semiautomatic algorithm based on the combination of the live wire algorithm and the active contour model is proposed for the segmentation of medical image series. First we obtain accurate segmentation of one or more slices in a medical image series by combining the livewire algorithm with the watershed method. Then the computer will segment the nearby slice using the modified active contour model. We introduce a gray-scale model to the boundary points of the active contour model to record the local region characters of the desired object in the segmented slice and replace the external energy of the traditional active contour model with the energy decided by the likelihood of the grayscale model. Moreover we introduce the active region concept of the snake to improve the segmentation accuracy. Experiment shows. that our algorithm can obtain the boundary of the desired object from a series of medical images reliably with only little user intervention.
doi_str_mv 10.1109/ICMLC.2002.1174506
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1174506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1174506</ieee_id><sourcerecordid>1174506</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-afb5ca7169b605748f21353d8dfab0da6f6012709e15a16c97882015f8fc37fc3</originalsourceid><addsrcrecordid>eNotj91KAzEUhAMiKLUvoDd5ga0nm02yeymLP4WW3tTrcnZzskb2R5JU8e0N2GGGYW4GPsbuBWyEgOZx2-537aYEKPM2lQJ9xdaNqSFbGgW1vmHrGD8hq6qUlOqWHfdkfY8j9xMOxCMFTzHXMNGcMPll5ufo54H_YKIQP8jyFHCObgkTx9ly7JP_Jt4vc1rOgU-LpfGOXTscI60vvWLvL8_H9q3YHV637dOu8MLIVKDrVI9G6KbToExVu1JIJW1tHXZgUTsNojTQkFAodJ9R6hKEcrXrpclZsYf_X09Ep6-QGcLv6cIu_wA10VBq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Medical image series segmentation using watershed transform and active contour model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fu-Ping Zhu ; Jie Tian ; Xi-Ping Luo ; Xing-Fei Ge</creator><creatorcontrib>Fu-Ping Zhu ; Jie Tian ; Xi-Ping Luo ; Xing-Fei Ge</creatorcontrib><description>In this paper, a semiautomatic algorithm based on the combination of the live wire algorithm and the active contour model is proposed for the segmentation of medical image series. First we obtain accurate segmentation of one or more slices in a medical image series by combining the livewire algorithm with the watershed method. Then the computer will segment the nearby slice using the modified active contour model. We introduce a gray-scale model to the boundary points of the active contour model to record the local region characters of the desired object in the segmented slice and replace the external energy of the traditional active contour model with the energy decided by the likelihood of the grayscale model. Moreover we introduce the active region concept of the snake to improve the segmentation accuracy. Experiment shows. that our algorithm can obtain the boundary of the desired object from a series of medical images reliably with only little user intervention.</description><identifier>ISBN: 9780780375086</identifier><identifier>ISBN: 0780375084</identifier><identifier>DOI: 10.1109/ICMLC.2002.1174506</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active contours ; Artificial intelligence ; Automation ; Biomedical imaging ; Computer vision ; Electronic mail ; Gray-scale ; Image analysis ; Image segmentation ; Wire</subject><ispartof>Proceedings. International Conference on Machine Learning and Cybernetics, 2002, Vol.2, p.865-870 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1174506$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1174506$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu-Ping Zhu</creatorcontrib><creatorcontrib>Jie Tian</creatorcontrib><creatorcontrib>Xi-Ping Luo</creatorcontrib><creatorcontrib>Xing-Fei Ge</creatorcontrib><title>Medical image series segmentation using watershed transform and active contour model</title><title>Proceedings. International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>In this paper, a semiautomatic algorithm based on the combination of the live wire algorithm and the active contour model is proposed for the segmentation of medical image series. First we obtain accurate segmentation of one or more slices in a medical image series by combining the livewire algorithm with the watershed method. Then the computer will segment the nearby slice using the modified active contour model. We introduce a gray-scale model to the boundary points of the active contour model to record the local region characters of the desired object in the segmented slice and replace the external energy of the traditional active contour model with the energy decided by the likelihood of the grayscale model. Moreover we introduce the active region concept of the snake to improve the segmentation accuracy. Experiment shows. that our algorithm can obtain the boundary of the desired object from a series of medical images reliably with only little user intervention.</description><subject>Active contours</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Biomedical imaging</subject><subject>Computer vision</subject><subject>Electronic mail</subject><subject>Gray-scale</subject><subject>Image analysis</subject><subject>Image segmentation</subject><subject>Wire</subject><isbn>9780780375086</isbn><isbn>0780375084</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj91KAzEUhAMiKLUvoDd5ga0nm02yeymLP4WW3tTrcnZzskb2R5JU8e0N2GGGYW4GPsbuBWyEgOZx2-537aYEKPM2lQJ9xdaNqSFbGgW1vmHrGD8hq6qUlOqWHfdkfY8j9xMOxCMFTzHXMNGcMPll5ufo54H_YKIQP8jyFHCObgkTx9ly7JP_Jt4vc1rOgU-LpfGOXTscI60vvWLvL8_H9q3YHV637dOu8MLIVKDrVI9G6KbToExVu1JIJW1tHXZgUTsNojTQkFAodJ9R6hKEcrXrpclZsYf_X09Ep6-QGcLv6cIu_wA10VBq</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Fu-Ping Zhu</creator><creator>Jie Tian</creator><creator>Xi-Ping Luo</creator><creator>Xing-Fei Ge</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Medical image series segmentation using watershed transform and active contour model</title><author>Fu-Ping Zhu ; Jie Tian ; Xi-Ping Luo ; Xing-Fei Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-afb5ca7169b605748f21353d8dfab0da6f6012709e15a16c97882015f8fc37fc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Active contours</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Biomedical imaging</topic><topic>Computer vision</topic><topic>Electronic mail</topic><topic>Gray-scale</topic><topic>Image analysis</topic><topic>Image segmentation</topic><topic>Wire</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu-Ping Zhu</creatorcontrib><creatorcontrib>Jie Tian</creatorcontrib><creatorcontrib>Xi-Ping Luo</creatorcontrib><creatorcontrib>Xing-Fei Ge</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu-Ping Zhu</au><au>Jie Tian</au><au>Xi-Ping Luo</au><au>Xing-Fei Ge</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Medical image series segmentation using watershed transform and active contour model</atitle><btitle>Proceedings. International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2002</date><risdate>2002</risdate><volume>2</volume><spage>865</spage><epage>870 vol.2</epage><pages>865-870 vol.2</pages><isbn>9780780375086</isbn><isbn>0780375084</isbn><abstract>In this paper, a semiautomatic algorithm based on the combination of the live wire algorithm and the active contour model is proposed for the segmentation of medical image series. First we obtain accurate segmentation of one or more slices in a medical image series by combining the livewire algorithm with the watershed method. Then the computer will segment the nearby slice using the modified active contour model. We introduce a gray-scale model to the boundary points of the active contour model to record the local region characters of the desired object in the segmented slice and replace the external energy of the traditional active contour model with the energy decided by the likelihood of the grayscale model. Moreover we introduce the active region concept of the snake to improve the segmentation accuracy. Experiment shows. that our algorithm can obtain the boundary of the desired object from a series of medical images reliably with only little user intervention.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2002.1174506</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780375086
ispartof Proceedings. International Conference on Machine Learning and Cybernetics, 2002, Vol.2, p.865-870 vol.2
issn
language eng
recordid cdi_ieee_primary_1174506
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active contours
Artificial intelligence
Automation
Biomedical imaging
Computer vision
Electronic mail
Gray-scale
Image analysis
Image segmentation
Wire
title Medical image series segmentation using watershed transform and active contour model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Medical%20image%20series%20segmentation%20using%20watershed%20transform%20and%20active%20contour%20model&rft.btitle=Proceedings.%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Fu-Ping%20Zhu&rft.date=2002&rft.volume=2&rft.spage=865&rft.epage=870%20vol.2&rft.pages=865-870%20vol.2&rft.isbn=9780780375086&rft.isbn_list=0780375084&rft_id=info:doi/10.1109/ICMLC.2002.1174506&rft_dat=%3Cieee_6IE%3E1174506%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1174506&rfr_iscdi=true