Design and implementation of industrial neural network controller using backstepping

In this paper, a novel neural network (NN) backstepping controller is modified for application to an industrial motor drive system. A control system structure and NN tuning algorithms are presented that are shown to guarantee stability and performance of the closed-loop system. The NN backstepping c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2003-02, Vol.50 (1), p.193-201
Hauptverfasser: Kuljaca, O., Swamy, N., Lewis, F.L., Kwan, C.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 193
container_title IEEE transactions on industrial electronics (1982)
container_volume 50
creator Kuljaca, O.
Swamy, N.
Lewis, F.L.
Kwan, C.M.
description In this paper, a novel neural network (NN) backstepping controller is modified for application to an industrial motor drive system. A control system structure and NN tuning algorithms are presented that are shown to guarantee stability and performance of the closed-loop system. The NN backstepping controller is implemented on an actual motor drive system using a two-PC control system developed at The University of Texas at Arlington. The implementation results show that the NN backstepping controller is highly effective in controlling the industrial motor drive system. It is also shown that the NN controller gives better results on actual systems than a standard backstepping controller developed assuming full knowledge of the dynamics. Moreover, the NN controller does not require the linear-in-the-parameters assumption or the computation of regression matrices required by standard backstepping.
doi_str_mv 10.1109/TIE.2002.807675
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1174075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1174075</ieee_id><sourcerecordid>901684783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-183a87a24b393151c94398ac28d06acdfe72ada4d1846571e9e5f715da594d443</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouH6cPXgpHvTU3UyaNMlR_IYFL-s5xHYq0W5Skxbx3xtdQfCgp5dhnndgeAg5AjoHoHqxuruaM0rZXFFZS7FFZiCELLXmapvMKJOqpJTXu2QvpWdKgQsQM7K6xOSefGF9W7j10OMa_WhHF3wRusL5dkpjdLYvPE7xK8a3EF-KJvgxhr7HWEzJ-afi0TYvacRhyMMB2elsn_DwO_fJw_XV6uK2XN7f3F2cL8umUnQsQVVWScv4Y6UrENBoXmllG6ZaWtum7VAy21reguK1kIAaRSdBtFZo3nJe7ZOzzd0hhtcJ02jWLjXY99ZjmJLRFGrFpaoyefonyTRoKWT9P6hYLRnoDJ78Ap_DFH1-1yjFWX6oohlabKAmhpQidmaIbm3juwFqPq2ZbM18WjMba7lxvGk4RPyhQXKatx8q15Lj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884293130</pqid></control><display><type>article</type><title>Design and implementation of industrial neural network controller using backstepping</title><source>IEEE Electronic Library (IEL)</source><creator>Kuljaca, O. ; Swamy, N. ; Lewis, F.L. ; Kwan, C.M.</creator><creatorcontrib>Kuljaca, O. ; Swamy, N. ; Lewis, F.L. ; Kwan, C.M.</creatorcontrib><description>In this paper, a novel neural network (NN) backstepping controller is modified for application to an industrial motor drive system. A control system structure and NN tuning algorithms are presented that are shown to guarantee stability and performance of the closed-loop system. The NN backstepping controller is implemented on an actual motor drive system using a two-PC control system developed at The University of Texas at Arlington. The implementation results show that the NN backstepping controller is highly effective in controlling the industrial motor drive system. It is also shown that the NN controller gives better results on actual systems than a standard backstepping controller developed assuming full knowledge of the dynamics. Moreover, the NN controller does not require the linear-in-the-parameters assumption or the computation of regression matrices required by standard backstepping.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2002.807675</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Backstepping ; Control systems ; Electrical equipment industry ; Industrial control ; Manufacturing industries ; Motor drives ; Neural networks ; Stability ; Vehicle dynamics ; Very large scale integration</subject><ispartof>IEEE transactions on industrial electronics (1982), 2003-02, Vol.50 (1), p.193-201</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-183a87a24b393151c94398ac28d06acdfe72ada4d1846571e9e5f715da594d443</citedby><cites>FETCH-LOGICAL-c380t-183a87a24b393151c94398ac28d06acdfe72ada4d1846571e9e5f715da594d443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1174075$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1174075$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuljaca, O.</creatorcontrib><creatorcontrib>Swamy, N.</creatorcontrib><creatorcontrib>Lewis, F.L.</creatorcontrib><creatorcontrib>Kwan, C.M.</creatorcontrib><title>Design and implementation of industrial neural network controller using backstepping</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this paper, a novel neural network (NN) backstepping controller is modified for application to an industrial motor drive system. A control system structure and NN tuning algorithms are presented that are shown to guarantee stability and performance of the closed-loop system. The NN backstepping controller is implemented on an actual motor drive system using a two-PC control system developed at The University of Texas at Arlington. The implementation results show that the NN backstepping controller is highly effective in controlling the industrial motor drive system. It is also shown that the NN controller gives better results on actual systems than a standard backstepping controller developed assuming full knowledge of the dynamics. Moreover, the NN controller does not require the linear-in-the-parameters assumption or the computation of regression matrices required by standard backstepping.</description><subject>Backstepping</subject><subject>Control systems</subject><subject>Electrical equipment industry</subject><subject>Industrial control</subject><subject>Manufacturing industries</subject><subject>Motor drives</subject><subject>Neural networks</subject><subject>Stability</subject><subject>Vehicle dynamics</subject><subject>Very large scale integration</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1LxDAQhoMouH6cPXgpHvTU3UyaNMlR_IYFL-s5xHYq0W5Skxbx3xtdQfCgp5dhnndgeAg5AjoHoHqxuruaM0rZXFFZS7FFZiCELLXmapvMKJOqpJTXu2QvpWdKgQsQM7K6xOSefGF9W7j10OMa_WhHF3wRusL5dkpjdLYvPE7xK8a3EF-KJvgxhr7HWEzJ-afi0TYvacRhyMMB2elsn_DwO_fJw_XV6uK2XN7f3F2cL8umUnQsQVVWScv4Y6UrENBoXmllG6ZaWtum7VAy21reguK1kIAaRSdBtFZo3nJe7ZOzzd0hhtcJ02jWLjXY99ZjmJLRFGrFpaoyefonyTRoKWT9P6hYLRnoDJ78Ap_DFH1-1yjFWX6oohlabKAmhpQidmaIbm3juwFqPq2ZbM18WjMba7lxvGk4RPyhQXKatx8q15Lj</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Kuljaca, O.</creator><creator>Swamy, N.</creator><creator>Lewis, F.L.</creator><creator>Kwan, C.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20030201</creationdate><title>Design and implementation of industrial neural network controller using backstepping</title><author>Kuljaca, O. ; Swamy, N. ; Lewis, F.L. ; Kwan, C.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-183a87a24b393151c94398ac28d06acdfe72ada4d1846571e9e5f715da594d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Backstepping</topic><topic>Control systems</topic><topic>Electrical equipment industry</topic><topic>Industrial control</topic><topic>Manufacturing industries</topic><topic>Motor drives</topic><topic>Neural networks</topic><topic>Stability</topic><topic>Vehicle dynamics</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuljaca, O.</creatorcontrib><creatorcontrib>Swamy, N.</creatorcontrib><creatorcontrib>Lewis, F.L.</creatorcontrib><creatorcontrib>Kwan, C.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuljaca, O.</au><au>Swamy, N.</au><au>Lewis, F.L.</au><au>Kwan, C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and implementation of industrial neural network controller using backstepping</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2003-02-01</date><risdate>2003</risdate><volume>50</volume><issue>1</issue><spage>193</spage><epage>201</epage><pages>193-201</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this paper, a novel neural network (NN) backstepping controller is modified for application to an industrial motor drive system. A control system structure and NN tuning algorithms are presented that are shown to guarantee stability and performance of the closed-loop system. The NN backstepping controller is implemented on an actual motor drive system using a two-PC control system developed at The University of Texas at Arlington. The implementation results show that the NN backstepping controller is highly effective in controlling the industrial motor drive system. It is also shown that the NN controller gives better results on actual systems than a standard backstepping controller developed assuming full knowledge of the dynamics. Moreover, the NN controller does not require the linear-in-the-parameters assumption or the computation of regression matrices required by standard backstepping.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2002.807675</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2003-02, Vol.50 (1), p.193-201
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_1174075
source IEEE Electronic Library (IEL)
subjects Backstepping
Control systems
Electrical equipment industry
Industrial control
Manufacturing industries
Motor drives
Neural networks
Stability
Vehicle dynamics
Very large scale integration
title Design and implementation of industrial neural network controller using backstepping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20implementation%20of%20industrial%20neural%20network%20controller%20using%20backstepping&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Kuljaca,%20O.&rft.date=2003-02-01&rft.volume=50&rft.issue=1&rft.spage=193&rft.epage=201&rft.pages=193-201&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2002.807675&rft_dat=%3Cproquest_RIE%3E901684783%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884293130&rft_id=info:pmid/&rft_ieee_id=1174075&rfr_iscdi=true