The model of optimizing the function of reservoir operation based on genetic programming
The function of reservoir operation is generally obtained by using the statistic analysis tools. This paper introduces genetic programming based on the statistic analysis tools, the genetic programming way changes the randomness due to utilizing the statistic analysis tools to search the best functi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1672 vol.3 |
---|---|
container_issue | |
container_start_page | 1669 |
container_title | |
container_volume | 3 |
creator | Xiao-Xi Zhou Xian-Jia Wang Zhong-Yun Zhu |
description | The function of reservoir operation is generally obtained by using the statistic analysis tools. This paper introduces genetic programming based on the statistic analysis tools, the genetic programming way changes the randomness due to utilizing the statistic analysis tools to search the best function of reservoir operation, then a case study illustrates that the method is effective and available in optimizing the function of reservoir operation. |
doi_str_mv | 10.1109/ICMLC.2002.1167497 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1167497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1167497</ieee_id><sourcerecordid>1167497</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-5d79ff034d2fd2acd80037d4a7ed16cb587f5162503c007702447892b303ac0f3</originalsourceid><addsrcrecordid>eNotT9tKxDAQDYigrP0BfckPdJ3cmvZRipeFFV9W8G1Jk0mNbJuSVkG_3ujucGBmzjkcZgi5ZrBmDJrbTfu8bdccgOe90rLRZ6RodA0ZQiuoqwtSzPMH5JJSCaEuydvuHekQHR5o9DROSxjCTxh7umTef452CXH8kxLOmL5iSNmEyfzTnZnR0Tz0OOISLJ1S7JMZhhxwRc69OcxYnPqKvD7c79qncvvyuGnvtmVgWiylcrrxHoR03DturKsh3-qk0ehYZTtVa69YxRUIC6A1cCl13fBOgDAWvFiRm2NuQMT9lMJg0vf-9L_4BXtAUU8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The model of optimizing the function of reservoir operation based on genetic programming</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiao-Xi Zhou ; Xian-Jia Wang ; Zhong-Yun Zhu</creator><creatorcontrib>Xiao-Xi Zhou ; Xian-Jia Wang ; Zhong-Yun Zhu</creatorcontrib><description>The function of reservoir operation is generally obtained by using the statistic analysis tools. This paper introduces genetic programming based on the statistic analysis tools, the genetic programming way changes the randomness due to utilizing the statistic analysis tools to search the best function of reservoir operation, then a case study illustrates that the method is effective and available in optimizing the function of reservoir operation.</description><identifier>ISBN: 9780780375086</identifier><identifier>ISBN: 0780375084</identifier><identifier>DOI: 10.1109/ICMLC.2002.1167497</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Analysis of variance ; Design optimization ; Genetic programming ; Optimization methods ; Reservoirs ; Statistical analysis ; Time sharing computer systems ; Tree data structures ; Water resources</subject><ispartof>Proceedings. International Conference on Machine Learning and Cybernetics, 2002, Vol.3, p.1669-1672 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1167497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1167497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao-Xi Zhou</creatorcontrib><creatorcontrib>Xian-Jia Wang</creatorcontrib><creatorcontrib>Zhong-Yun Zhu</creatorcontrib><title>The model of optimizing the function of reservoir operation based on genetic programming</title><title>Proceedings. International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>The function of reservoir operation is generally obtained by using the statistic analysis tools. This paper introduces genetic programming based on the statistic analysis tools, the genetic programming way changes the randomness due to utilizing the statistic analysis tools to search the best function of reservoir operation, then a case study illustrates that the method is effective and available in optimizing the function of reservoir operation.</description><subject>Algorithm design and analysis</subject><subject>Analysis of variance</subject><subject>Design optimization</subject><subject>Genetic programming</subject><subject>Optimization methods</subject><subject>Reservoirs</subject><subject>Statistical analysis</subject><subject>Time sharing computer systems</subject><subject>Tree data structures</subject><subject>Water resources</subject><isbn>9780780375086</isbn><isbn>0780375084</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT9tKxDAQDYigrP0BfckPdJ3cmvZRipeFFV9W8G1Jk0mNbJuSVkG_3ujucGBmzjkcZgi5ZrBmDJrbTfu8bdccgOe90rLRZ6RodA0ZQiuoqwtSzPMH5JJSCaEuydvuHekQHR5o9DROSxjCTxh7umTef452CXH8kxLOmL5iSNmEyfzTnZnR0Tz0OOISLJ1S7JMZhhxwRc69OcxYnPqKvD7c79qncvvyuGnvtmVgWiylcrrxHoR03DturKsh3-qk0ehYZTtVa69YxRUIC6A1cCl13fBOgDAWvFiRm2NuQMT9lMJg0vf-9L_4BXtAUU8</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Xiao-Xi Zhou</creator><creator>Xian-Jia Wang</creator><creator>Zhong-Yun Zhu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>The model of optimizing the function of reservoir operation based on genetic programming</title><author>Xiao-Xi Zhou ; Xian-Jia Wang ; Zhong-Yun Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-5d79ff034d2fd2acd80037d4a7ed16cb587f5162503c007702447892b303ac0f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithm design and analysis</topic><topic>Analysis of variance</topic><topic>Design optimization</topic><topic>Genetic programming</topic><topic>Optimization methods</topic><topic>Reservoirs</topic><topic>Statistical analysis</topic><topic>Time sharing computer systems</topic><topic>Tree data structures</topic><topic>Water resources</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao-Xi Zhou</creatorcontrib><creatorcontrib>Xian-Jia Wang</creatorcontrib><creatorcontrib>Zhong-Yun Zhu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao-Xi Zhou</au><au>Xian-Jia Wang</au><au>Zhong-Yun Zhu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The model of optimizing the function of reservoir operation based on genetic programming</atitle><btitle>Proceedings. International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2002</date><risdate>2002</risdate><volume>3</volume><spage>1669</spage><epage>1672 vol.3</epage><pages>1669-1672 vol.3</pages><isbn>9780780375086</isbn><isbn>0780375084</isbn><abstract>The function of reservoir operation is generally obtained by using the statistic analysis tools. This paper introduces genetic programming based on the statistic analysis tools, the genetic programming way changes the randomness due to utilizing the statistic analysis tools to search the best function of reservoir operation, then a case study illustrates that the method is effective and available in optimizing the function of reservoir operation.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2002.1167497</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780375086 |
ispartof | Proceedings. International Conference on Machine Learning and Cybernetics, 2002, Vol.3, p.1669-1672 vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1167497 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Analysis of variance Design optimization Genetic programming Optimization methods Reservoirs Statistical analysis Time sharing computer systems Tree data structures Water resources |
title | The model of optimizing the function of reservoir operation based on genetic programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20model%20of%20optimizing%20the%20function%20of%20reservoir%20operation%20based%20on%20genetic%20programming&rft.btitle=Proceedings.%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Xiao-Xi%20Zhou&rft.date=2002&rft.volume=3&rft.spage=1669&rft.epage=1672%20vol.3&rft.pages=1669-1672%20vol.3&rft.isbn=9780780375086&rft.isbn_list=0780375084&rft_id=info:doi/10.1109/ICMLC.2002.1167497&rft_dat=%3Cieee_6IE%3E1167497%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1167497&rfr_iscdi=true |