The model of optimizing the function of reservoir operation based on genetic programming

The function of reservoir operation is generally obtained by using the statistic analysis tools. This paper introduces genetic programming based on the statistic analysis tools, the genetic programming way changes the randomness due to utilizing the statistic analysis tools to search the best functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiao-Xi Zhou, Xian-Jia Wang, Zhong-Yun Zhu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1672 vol.3
container_issue
container_start_page 1669
container_title
container_volume 3
creator Xiao-Xi Zhou
Xian-Jia Wang
Zhong-Yun Zhu
description The function of reservoir operation is generally obtained by using the statistic analysis tools. This paper introduces genetic programming based on the statistic analysis tools, the genetic programming way changes the randomness due to utilizing the statistic analysis tools to search the best function of reservoir operation, then a case study illustrates that the method is effective and available in optimizing the function of reservoir operation.
doi_str_mv 10.1109/ICMLC.2002.1167497
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1167497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1167497</ieee_id><sourcerecordid>1167497</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-5d79ff034d2fd2acd80037d4a7ed16cb587f5162503c007702447892b303ac0f3</originalsourceid><addsrcrecordid>eNotT9tKxDAQDYigrP0BfckPdJ3cmvZRipeFFV9W8G1Jk0mNbJuSVkG_3ujucGBmzjkcZgi5ZrBmDJrbTfu8bdccgOe90rLRZ6RodA0ZQiuoqwtSzPMH5JJSCaEuydvuHekQHR5o9DROSxjCTxh7umTef452CXH8kxLOmL5iSNmEyfzTnZnR0Tz0OOISLJ1S7JMZhhxwRc69OcxYnPqKvD7c79qncvvyuGnvtmVgWiylcrrxHoR03DturKsh3-qk0ehYZTtVa69YxRUIC6A1cCl13fBOgDAWvFiRm2NuQMT9lMJg0vf-9L_4BXtAUU8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The model of optimizing the function of reservoir operation based on genetic programming</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiao-Xi Zhou ; Xian-Jia Wang ; Zhong-Yun Zhu</creator><creatorcontrib>Xiao-Xi Zhou ; Xian-Jia Wang ; Zhong-Yun Zhu</creatorcontrib><description>The function of reservoir operation is generally obtained by using the statistic analysis tools. This paper introduces genetic programming based on the statistic analysis tools, the genetic programming way changes the randomness due to utilizing the statistic analysis tools to search the best function of reservoir operation, then a case study illustrates that the method is effective and available in optimizing the function of reservoir operation.</description><identifier>ISBN: 9780780375086</identifier><identifier>ISBN: 0780375084</identifier><identifier>DOI: 10.1109/ICMLC.2002.1167497</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Analysis of variance ; Design optimization ; Genetic programming ; Optimization methods ; Reservoirs ; Statistical analysis ; Time sharing computer systems ; Tree data structures ; Water resources</subject><ispartof>Proceedings. International Conference on Machine Learning and Cybernetics, 2002, Vol.3, p.1669-1672 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1167497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1167497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao-Xi Zhou</creatorcontrib><creatorcontrib>Xian-Jia Wang</creatorcontrib><creatorcontrib>Zhong-Yun Zhu</creatorcontrib><title>The model of optimizing the function of reservoir operation based on genetic programming</title><title>Proceedings. International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>The function of reservoir operation is generally obtained by using the statistic analysis tools. This paper introduces genetic programming based on the statistic analysis tools, the genetic programming way changes the randomness due to utilizing the statistic analysis tools to search the best function of reservoir operation, then a case study illustrates that the method is effective and available in optimizing the function of reservoir operation.</description><subject>Algorithm design and analysis</subject><subject>Analysis of variance</subject><subject>Design optimization</subject><subject>Genetic programming</subject><subject>Optimization methods</subject><subject>Reservoirs</subject><subject>Statistical analysis</subject><subject>Time sharing computer systems</subject><subject>Tree data structures</subject><subject>Water resources</subject><isbn>9780780375086</isbn><isbn>0780375084</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT9tKxDAQDYigrP0BfckPdJ3cmvZRipeFFV9W8G1Jk0mNbJuSVkG_3ujucGBmzjkcZgi5ZrBmDJrbTfu8bdccgOe90rLRZ6RodA0ZQiuoqwtSzPMH5JJSCaEuydvuHekQHR5o9DROSxjCTxh7umTef452CXH8kxLOmL5iSNmEyfzTnZnR0Tz0OOISLJ1S7JMZhhxwRc69OcxYnPqKvD7c79qncvvyuGnvtmVgWiylcrrxHoR03DturKsh3-qk0ehYZTtVa69YxRUIC6A1cCl13fBOgDAWvFiRm2NuQMT9lMJg0vf-9L_4BXtAUU8</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Xiao-Xi Zhou</creator><creator>Xian-Jia Wang</creator><creator>Zhong-Yun Zhu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>The model of optimizing the function of reservoir operation based on genetic programming</title><author>Xiao-Xi Zhou ; Xian-Jia Wang ; Zhong-Yun Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-5d79ff034d2fd2acd80037d4a7ed16cb587f5162503c007702447892b303ac0f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithm design and analysis</topic><topic>Analysis of variance</topic><topic>Design optimization</topic><topic>Genetic programming</topic><topic>Optimization methods</topic><topic>Reservoirs</topic><topic>Statistical analysis</topic><topic>Time sharing computer systems</topic><topic>Tree data structures</topic><topic>Water resources</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao-Xi Zhou</creatorcontrib><creatorcontrib>Xian-Jia Wang</creatorcontrib><creatorcontrib>Zhong-Yun Zhu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao-Xi Zhou</au><au>Xian-Jia Wang</au><au>Zhong-Yun Zhu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The model of optimizing the function of reservoir operation based on genetic programming</atitle><btitle>Proceedings. International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2002</date><risdate>2002</risdate><volume>3</volume><spage>1669</spage><epage>1672 vol.3</epage><pages>1669-1672 vol.3</pages><isbn>9780780375086</isbn><isbn>0780375084</isbn><abstract>The function of reservoir operation is generally obtained by using the statistic analysis tools. This paper introduces genetic programming based on the statistic analysis tools, the genetic programming way changes the randomness due to utilizing the statistic analysis tools to search the best function of reservoir operation, then a case study illustrates that the method is effective and available in optimizing the function of reservoir operation.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2002.1167497</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780375086
ispartof Proceedings. International Conference on Machine Learning and Cybernetics, 2002, Vol.3, p.1669-1672 vol.3
issn
language eng
recordid cdi_ieee_primary_1167497
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Analysis of variance
Design optimization
Genetic programming
Optimization methods
Reservoirs
Statistical analysis
Time sharing computer systems
Tree data structures
Water resources
title The model of optimizing the function of reservoir operation based on genetic programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20model%20of%20optimizing%20the%20function%20of%20reservoir%20operation%20based%20on%20genetic%20programming&rft.btitle=Proceedings.%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Xiao-Xi%20Zhou&rft.date=2002&rft.volume=3&rft.spage=1669&rft.epage=1672%20vol.3&rft.pages=1669-1672%20vol.3&rft.isbn=9780780375086&rft.isbn_list=0780375084&rft_id=info:doi/10.1109/ICMLC.2002.1167497&rft_dat=%3Cieee_6IE%3E1167497%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1167497&rfr_iscdi=true