Research on some problems in the Kohonen SOM algorithm
The article analyzes the relation between initial parameters setting and the formation of a topographic map of the input patterns in which the spatial locations of the neurons in the lattice are indicative of intrinsic statistical features contained in the input patterns of a Kohonen self-organizing...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1282 vol.3 |
---|---|
container_issue | |
container_start_page | 1279 |
container_title | |
container_volume | 3 |
creator | Ying He Tian-Jin Feng Jun-Kuo Cao Xiang-Qian Ding Ying-Hui Zhou |
description | The article analyzes the relation between initial parameters setting and the formation of a topographic map of the input patterns in which the spatial locations of the neurons in the lattice are indicative of intrinsic statistical features contained in the input patterns of a Kohonen self-organizing map (SOM) algorithm. Taking a network arranged in the form of a two-dimensional lattice and trained with a two-dimensional input vector as an example, the author puts forward an initializing method for connection weights of the neurons in the competition layer. |
doi_str_mv | 10.1109/ICMLC.2002.1167409 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1167409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1167409</ieee_id><sourcerecordid>1167409</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-de7cc8e9f2b3060d5029ec5395a0d51374168b7312b016d3bc0e0f1a65c7aa543</originalsourceid><addsrcrecordid>eNotj8tqwzAURAWl0JL6B9qNfsDpla8e1rKYPkIcAn2sgyRf1y62FSxv-vc1NMOB4WwGhrF7AVshwD7uqkNdbQuAYnVtJNgrlllTwgoaBaW-YVlKP7BGSoWobpl-p0RuDh2PE09xJH6eox9oTLyf-NIR38cuTjTxj-OBu-E7zv3SjXfsunVDouzSG_b18vxZveX18XVXPdV5LwwueUMmhJJsW3gEDY2CwlJQaJVbRaCRQpfeoCg8CN2gD0DQCqdVMM4piRv28L_bE9HpPPejm39Pl3f4BwyZQ9o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research on some problems in the Kohonen SOM algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ying He ; Tian-Jin Feng ; Jun-Kuo Cao ; Xiang-Qian Ding ; Ying-Hui Zhou</creator><creatorcontrib>Ying He ; Tian-Jin Feng ; Jun-Kuo Cao ; Xiang-Qian Ding ; Ying-Hui Zhou</creatorcontrib><description>The article analyzes the relation between initial parameters setting and the formation of a topographic map of the input patterns in which the spatial locations of the neurons in the lattice are indicative of intrinsic statistical features contained in the input patterns of a Kohonen self-organizing map (SOM) algorithm. Taking a network arranged in the form of a two-dimensional lattice and trained with a two-dimensional input vector as an example, the author puts forward an initializing method for connection weights of the neurons in the competition layer.</description><identifier>ISBN: 9780780375086</identifier><identifier>ISBN: 0780375084</identifier><identifier>DOI: 10.1109/ICMLC.2002.1167409</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Convergence ; Helium ; Lattices ; Machine learning ; Machine learning algorithms ; Neurons ; Oceans ; Organizing ; Signal processing algorithms</subject><ispartof>Proceedings. International Conference on Machine Learning and Cybernetics, 2002, Vol.3, p.1279-1282 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1167409$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1167409$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying He</creatorcontrib><creatorcontrib>Tian-Jin Feng</creatorcontrib><creatorcontrib>Jun-Kuo Cao</creatorcontrib><creatorcontrib>Xiang-Qian Ding</creatorcontrib><creatorcontrib>Ying-Hui Zhou</creatorcontrib><title>Research on some problems in the Kohonen SOM algorithm</title><title>Proceedings. International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>The article analyzes the relation between initial parameters setting and the formation of a topographic map of the input patterns in which the spatial locations of the neurons in the lattice are indicative of intrinsic statistical features contained in the input patterns of a Kohonen self-organizing map (SOM) algorithm. Taking a network arranged in the form of a two-dimensional lattice and trained with a two-dimensional input vector as an example, the author puts forward an initializing method for connection weights of the neurons in the competition layer.</description><subject>Application software</subject><subject>Convergence</subject><subject>Helium</subject><subject>Lattices</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Neurons</subject><subject>Oceans</subject><subject>Organizing</subject><subject>Signal processing algorithms</subject><isbn>9780780375086</isbn><isbn>0780375084</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURAWl0JL6B9qNfsDpla8e1rKYPkIcAn2sgyRf1y62FSxv-vc1NMOB4WwGhrF7AVshwD7uqkNdbQuAYnVtJNgrlllTwgoaBaW-YVlKP7BGSoWobpl-p0RuDh2PE09xJH6eox9oTLyf-NIR38cuTjTxj-OBu-E7zv3SjXfsunVDouzSG_b18vxZveX18XVXPdV5LwwueUMmhJJsW3gEDY2CwlJQaJVbRaCRQpfeoCg8CN2gD0DQCqdVMM4piRv28L_bE9HpPPejm39Pl3f4BwyZQ9o</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Ying He</creator><creator>Tian-Jin Feng</creator><creator>Jun-Kuo Cao</creator><creator>Xiang-Qian Ding</creator><creator>Ying-Hui Zhou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Research on some problems in the Kohonen SOM algorithm</title><author>Ying He ; Tian-Jin Feng ; Jun-Kuo Cao ; Xiang-Qian Ding ; Ying-Hui Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-de7cc8e9f2b3060d5029ec5395a0d51374168b7312b016d3bc0e0f1a65c7aa543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Application software</topic><topic>Convergence</topic><topic>Helium</topic><topic>Lattices</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Neurons</topic><topic>Oceans</topic><topic>Organizing</topic><topic>Signal processing algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying He</creatorcontrib><creatorcontrib>Tian-Jin Feng</creatorcontrib><creatorcontrib>Jun-Kuo Cao</creatorcontrib><creatorcontrib>Xiang-Qian Ding</creatorcontrib><creatorcontrib>Ying-Hui Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying He</au><au>Tian-Jin Feng</au><au>Jun-Kuo Cao</au><au>Xiang-Qian Ding</au><au>Ying-Hui Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research on some problems in the Kohonen SOM algorithm</atitle><btitle>Proceedings. International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2002</date><risdate>2002</risdate><volume>3</volume><spage>1279</spage><epage>1282 vol.3</epage><pages>1279-1282 vol.3</pages><isbn>9780780375086</isbn><isbn>0780375084</isbn><abstract>The article analyzes the relation between initial parameters setting and the formation of a topographic map of the input patterns in which the spatial locations of the neurons in the lattice are indicative of intrinsic statistical features contained in the input patterns of a Kohonen self-organizing map (SOM) algorithm. Taking a network arranged in the form of a two-dimensional lattice and trained with a two-dimensional input vector as an example, the author puts forward an initializing method for connection weights of the neurons in the competition layer.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2002.1167409</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780375086 |
ispartof | Proceedings. International Conference on Machine Learning and Cybernetics, 2002, Vol.3, p.1279-1282 vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1167409 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Convergence Helium Lattices Machine learning Machine learning algorithms Neurons Oceans Organizing Signal processing algorithms |
title | Research on some problems in the Kohonen SOM algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20on%20some%20problems%20in%20the%20Kohonen%20SOM%20algorithm&rft.btitle=Proceedings.%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Ying%20He&rft.date=2002&rft.volume=3&rft.spage=1279&rft.epage=1282%20vol.3&rft.pages=1279-1282%20vol.3&rft.isbn=9780780375086&rft.isbn_list=0780375084&rft_id=info:doi/10.1109/ICMLC.2002.1167409&rft_dat=%3Cieee_6IE%3E1167409%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1167409&rfr_iscdi=true |