Analysis of support vectors helps to identify borderline patients in classification studies

In this work a new approach to the support vector machine (SVM) method is taken. Not in developing a new algorithm, but rather in analyzing the result of the performed classification tasks. The SVM approach provides efficient and powerful classification algorithms. SM-Classifiers have a few meta par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schwenker, F., Kestler, H.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue
container_start_page 305
container_title
container_volume
creator Schwenker, F.
Kestler, H.A.
description In this work a new approach to the support vector machine (SVM) method is taken. Not in developing a new algorithm, but rather in analyzing the result of the performed classification tasks. The SVM approach provides efficient and powerful classification algorithms. SM-Classifiers have a few meta parameters to be tuned, are easy to implement, and are trained through optimization of a quadratic cost function, which ensures the uniqueness of the SVM solution. The SVM solution is given through a linear combination of the training samples which are selected by the SVM optimization procedure. This subset of borderline samples close to the decision boundary can be separated into the samples which are misclassified and those samples that are just classified correctly. The potential drawback of the SVMs being restricted to samples from the dataset is at the same time an advantage in medical applications. Here, we applied this approach to a highly selected group of 44 patients with inducible ventricular tachycardia and a group of 51 healthy subjects.
doi_str_mv 10.1109/CIC.2002.1166769
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1166769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1166769</ieee_id><sourcerecordid>1166769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-1b02b24de1e33fd1ccd98cb7db9b4e729c409b3fdde57c54f9b7b116125f14b53</originalsourceid><addsrcrecordid>eNotkEtLAzEUhQMqWOrsBTf5A1PzTrMsg49CwY2uXJRJcoOBcTIkqdB_b8TChcM9HxzuPQjdU7KhlJjHYT9sGCGsbUppZa5QZ_SWtOFac6mu0YowrXolhb5FXSnREsbkH5Yr9Lmbx-lcYsEp4HJalpQr_gFXUy74C6al4Jpw9DDXGM7YpuwhT3EGvIw1NrfgOGM3jS03RNe8NONSTz5CuUM3YZwKdBddo4_np_fhtT-8veyH3aF3jJHa03aPZcIDBc6Dp855s3VWe2usAM2ME8TYRjxI7aQIxmrbnqVMBiqs5Gv08J8bAeC45Pg95vPxUgf_BSSNVeo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analysis of support vectors helps to identify borderline patients in classification studies</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schwenker, F. ; Kestler, H.A.</creator><creatorcontrib>Schwenker, F. ; Kestler, H.A.</creatorcontrib><description>In this work a new approach to the support vector machine (SVM) method is taken. Not in developing a new algorithm, but rather in analyzing the result of the performed classification tasks. The SVM approach provides efficient and powerful classification algorithms. SM-Classifiers have a few meta parameters to be tuned, are easy to implement, and are trained through optimization of a quadratic cost function, which ensures the uniqueness of the SVM solution. The SVM solution is given through a linear combination of the training samples which are selected by the SVM optimization procedure. This subset of borderline samples close to the decision boundary can be separated into the samples which are misclassified and those samples that are just classified correctly. The potential drawback of the SVMs being restricted to samples from the dataset is at the same time an advantage in medical applications. Here, we applied this approach to a highly selected group of 44 patients with inducible ventricular tachycardia and a group of 51 healthy subjects.</description><identifier>ISSN: 0276-6547</identifier><identifier>ISBN: 9780780377356</identifier><identifier>ISBN: 0780377354</identifier><identifier>DOI: 10.1109/CIC.2002.1166769</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Cardiology ; Cost function ; Hospitals ; Information processing ; Medical services ; Performance analysis ; Signal analysis ; Support vector machine classification ; Support vector machines</subject><ispartof>Computers in Cardiology, 2002, p.305-308</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c220t-1b02b24de1e33fd1ccd98cb7db9b4e729c409b3fdde57c54f9b7b116125f14b53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1166769$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1166769$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schwenker, F.</creatorcontrib><creatorcontrib>Kestler, H.A.</creatorcontrib><title>Analysis of support vectors helps to identify borderline patients in classification studies</title><title>Computers in Cardiology</title><addtitle>CIC</addtitle><description>In this work a new approach to the support vector machine (SVM) method is taken. Not in developing a new algorithm, but rather in analyzing the result of the performed classification tasks. The SVM approach provides efficient and powerful classification algorithms. SM-Classifiers have a few meta parameters to be tuned, are easy to implement, and are trained through optimization of a quadratic cost function, which ensures the uniqueness of the SVM solution. The SVM solution is given through a linear combination of the training samples which are selected by the SVM optimization procedure. This subset of borderline samples close to the decision boundary can be separated into the samples which are misclassified and those samples that are just classified correctly. The potential drawback of the SVMs being restricted to samples from the dataset is at the same time an advantage in medical applications. Here, we applied this approach to a highly selected group of 44 patients with inducible ventricular tachycardia and a group of 51 healthy subjects.</description><subject>Algorithm design and analysis</subject><subject>Cardiology</subject><subject>Cost function</subject><subject>Hospitals</subject><subject>Information processing</subject><subject>Medical services</subject><subject>Performance analysis</subject><subject>Signal analysis</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>0276-6547</issn><isbn>9780780377356</isbn><isbn>0780377354</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtLAzEUhQMqWOrsBTf5A1PzTrMsg49CwY2uXJRJcoOBcTIkqdB_b8TChcM9HxzuPQjdU7KhlJjHYT9sGCGsbUppZa5QZ_SWtOFac6mu0YowrXolhb5FXSnREsbkH5Yr9Lmbx-lcYsEp4HJalpQr_gFXUy74C6al4Jpw9DDXGM7YpuwhT3EGvIw1NrfgOGM3jS03RNe8NONSTz5CuUM3YZwKdBddo4_np_fhtT-8veyH3aF3jJHa03aPZcIDBc6Dp855s3VWe2usAM2ME8TYRjxI7aQIxmrbnqVMBiqs5Gv08J8bAeC45Pg95vPxUgf_BSSNVeo</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Schwenker, F.</creator><creator>Kestler, H.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>Analysis of support vectors helps to identify borderline patients in classification studies</title><author>Schwenker, F. ; Kestler, H.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-1b02b24de1e33fd1ccd98cb7db9b4e729c409b3fdde57c54f9b7b116125f14b53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithm design and analysis</topic><topic>Cardiology</topic><topic>Cost function</topic><topic>Hospitals</topic><topic>Information processing</topic><topic>Medical services</topic><topic>Performance analysis</topic><topic>Signal analysis</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Schwenker, F.</creatorcontrib><creatorcontrib>Kestler, H.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schwenker, F.</au><au>Kestler, H.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analysis of support vectors helps to identify borderline patients in classification studies</atitle><btitle>Computers in Cardiology</btitle><stitle>CIC</stitle><date>2002</date><risdate>2002</risdate><spage>305</spage><epage>308</epage><pages>305-308</pages><issn>0276-6547</issn><isbn>9780780377356</isbn><isbn>0780377354</isbn><abstract>In this work a new approach to the support vector machine (SVM) method is taken. Not in developing a new algorithm, but rather in analyzing the result of the performed classification tasks. The SVM approach provides efficient and powerful classification algorithms. SM-Classifiers have a few meta parameters to be tuned, are easy to implement, and are trained through optimization of a quadratic cost function, which ensures the uniqueness of the SVM solution. The SVM solution is given through a linear combination of the training samples which are selected by the SVM optimization procedure. This subset of borderline samples close to the decision boundary can be separated into the samples which are misclassified and those samples that are just classified correctly. The potential drawback of the SVMs being restricted to samples from the dataset is at the same time an advantage in medical applications. Here, we applied this approach to a highly selected group of 44 patients with inducible ventricular tachycardia and a group of 51 healthy subjects.</abstract><pub>IEEE</pub><doi>10.1109/CIC.2002.1166769</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0276-6547
ispartof Computers in Cardiology, 2002, p.305-308
issn 0276-6547
language eng
recordid cdi_ieee_primary_1166769
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Cardiology
Cost function
Hospitals
Information processing
Medical services
Performance analysis
Signal analysis
Support vector machine classification
Support vector machines
title Analysis of support vectors helps to identify borderline patients in classification studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analysis%20of%20support%20vectors%20helps%20to%20identify%20borderline%20patients%20in%20classification%20studies&rft.btitle=Computers%20in%20Cardiology&rft.au=Schwenker,%20F.&rft.date=2002&rft.spage=305&rft.epage=308&rft.pages=305-308&rft.issn=0276-6547&rft.isbn=9780780377356&rft.isbn_list=0780377354&rft_id=info:doi/10.1109/CIC.2002.1166769&rft_dat=%3Cieee_6IE%3E1166769%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1166769&rfr_iscdi=true