Theory of conical equiangular-spiral antennas--Part I--Numerical technique

The integral equation method is applied to find the rigorous solutions of the current distributions on conical, eqaiangular-spiral antennas of arbitrary spiral parameter and cone angle. With a transcendental interpolation function, antennas up to 10\lambda in armlength can be calculated. Comparisons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:I.R.E. transactions on antennas and propagation 1967-09, Vol.15 (5), p.634-639
Hauptverfasser: Yu Yeh, Mei, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 639
container_issue 5
container_start_page 634
container_title I.R.E. transactions on antennas and propagation
container_volume 15
creator Yu Yeh
Mei, K.
description The integral equation method is applied to find the rigorous solutions of the current distributions on conical, eqaiangular-spiral antennas of arbitrary spiral parameter and cone angle. With a transcendental interpolation function, antennas up to 10\lambda in armlength can be calculated. Comparisons of calculated and experimental results are presented, indicating excellent agreement. The computer programming resulting from this investigation thus replaces painstaking procedures of design, experimentation, and optimization of equiangular-spiral antennas by a few minutes of computer calculations.
doi_str_mv 10.1109/TAP.1967.1139029
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1139029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1139029</ieee_id><sourcerecordid>10_1109_TAP_1967_1139029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-c6282d4c6a9bec76f8595971b4837b37678dffa25b63c26ef90b9a341a11a6d63</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EEqFwR-KSF3CxHcexj1XFT1EFPQSJW7Rx1jQoTVo7OfTtSWkkTqOZndnDR8g9Z3POmXnMF5s5NyobXWKYMBck4mmqqRCCX5KIMa6pEerrmtyE8DNaqaWMyFu-xc4f487FtmtrC02Mh6GG9ntowNOwr_0YQdtj20KgdAO-j1eUvg879H_1Hu22rQ8D3pIrB03Au0ln5PP5KV--0vXHy2q5WFMrpOypVUKLSloFpkSbKadTk5qMl1InWZlkKtOVcyDSUiVWKHSGlQYSyYFzUJVKZoSd_1rfheDRFXtf78AfC86KE4tiZFGcWBQTi3HycJ7UiPhfn66_3-ta3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theory of conical equiangular-spiral antennas--Part I--Numerical technique</title><source>IEEE Electronic Library (IEL)</source><creator>Yu Yeh ; Mei, K.</creator><creatorcontrib>Yu Yeh ; Mei, K.</creatorcontrib><description>The integral equation method is applied to find the rigorous solutions of the current distributions on conical, eqaiangular-spiral antennas of arbitrary spiral parameter and cone angle. With a transcendental interpolation function, antennas up to 10\lambda in armlength can be calculated. Comparisons of calculated and experimental results are presented, indicating excellent agreement. The computer programming resulting from this investigation thus replaces painstaking procedures of design, experimentation, and optimization of equiangular-spiral antennas by a few minutes of computer calculations.</description><identifier>ISSN: 0018-926X</identifier><identifier>ISSN: 0096-1973</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.1967.1139029</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Antenna measurements ; Antenna theory ; Current distribution ; Design optimization ; Dipole antennas ; Geometry ; Helical antennas ; Integral equations ; Spirals ; Wire</subject><ispartof>I.R.E. transactions on antennas and propagation, 1967-09, Vol.15 (5), p.634-639</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c244t-c6282d4c6a9bec76f8595971b4837b37678dffa25b63c26ef90b9a341a11a6d63</citedby><cites>FETCH-LOGICAL-c244t-c6282d4c6a9bec76f8595971b4837b37678dffa25b63c26ef90b9a341a11a6d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1139029$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1139029$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu Yeh</creatorcontrib><creatorcontrib>Mei, K.</creatorcontrib><title>Theory of conical equiangular-spiral antennas--Part I--Numerical technique</title><title>I.R.E. transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The integral equation method is applied to find the rigorous solutions of the current distributions on conical, eqaiangular-spiral antennas of arbitrary spiral parameter and cone angle. With a transcendental interpolation function, antennas up to 10\lambda in armlength can be calculated. Comparisons of calculated and experimental results are presented, indicating excellent agreement. The computer programming resulting from this investigation thus replaces painstaking procedures of design, experimentation, and optimization of equiangular-spiral antennas by a few minutes of computer calculations.</description><subject>Antenna measurements</subject><subject>Antenna theory</subject><subject>Current distribution</subject><subject>Design optimization</subject><subject>Dipole antennas</subject><subject>Geometry</subject><subject>Helical antennas</subject><subject>Integral equations</subject><subject>Spirals</subject><subject>Wire</subject><issn>0018-926X</issn><issn>0096-1973</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EEqFwR-KSF3CxHcexj1XFT1EFPQSJW7Rx1jQoTVo7OfTtSWkkTqOZndnDR8g9Z3POmXnMF5s5NyobXWKYMBck4mmqqRCCX5KIMa6pEerrmtyE8DNaqaWMyFu-xc4f487FtmtrC02Mh6GG9ntowNOwr_0YQdtj20KgdAO-j1eUvg879H_1Hu22rQ8D3pIrB03Au0ln5PP5KV--0vXHy2q5WFMrpOypVUKLSloFpkSbKadTk5qMl1InWZlkKtOVcyDSUiVWKHSGlQYSyYFzUJVKZoSd_1rfheDRFXtf78AfC86KE4tiZFGcWBQTi3HycJ7UiPhfn66_3-ta3w</recordid><startdate>196709</startdate><enddate>196709</enddate><creator>Yu Yeh</creator><creator>Mei, K.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>196709</creationdate><title>Theory of conical equiangular-spiral antennas--Part I--Numerical technique</title><author>Yu Yeh ; Mei, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-c6282d4c6a9bec76f8595971b4837b37678dffa25b63c26ef90b9a341a11a6d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><topic>Antenna measurements</topic><topic>Antenna theory</topic><topic>Current distribution</topic><topic>Design optimization</topic><topic>Dipole antennas</topic><topic>Geometry</topic><topic>Helical antennas</topic><topic>Integral equations</topic><topic>Spirals</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu Yeh</creatorcontrib><creatorcontrib>Mei, K.</creatorcontrib><collection>CrossRef</collection><jtitle>I.R.E. transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu Yeh</au><au>Mei, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of conical equiangular-spiral antennas--Part I--Numerical technique</atitle><jtitle>I.R.E. transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>1967-09</date><risdate>1967</risdate><volume>15</volume><issue>5</issue><spage>634</spage><epage>639</epage><pages>634-639</pages><issn>0018-926X</issn><issn>0096-1973</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The integral equation method is applied to find the rigorous solutions of the current distributions on conical, eqaiangular-spiral antennas of arbitrary spiral parameter and cone angle. With a transcendental interpolation function, antennas up to 10\lambda in armlength can be calculated. Comparisons of calculated and experimental results are presented, indicating excellent agreement. The computer programming resulting from this investigation thus replaces painstaking procedures of design, experimentation, and optimization of equiangular-spiral antennas by a few minutes of computer calculations.</abstract><pub>IEEE</pub><doi>10.1109/TAP.1967.1139029</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof I.R.E. transactions on antennas and propagation, 1967-09, Vol.15 (5), p.634-639
issn 0018-926X
0096-1973
1558-2221
language eng
recordid cdi_ieee_primary_1139029
source IEEE Electronic Library (IEL)
subjects Antenna measurements
Antenna theory
Current distribution
Design optimization
Dipole antennas
Geometry
Helical antennas
Integral equations
Spirals
Wire
title Theory of conical equiangular-spiral antennas--Part I--Numerical technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20conical%20equiangular-spiral%20antennas--Part%20I--Numerical%20technique&rft.jtitle=I.R.E.%20transactions%20on%20antennas%20and%20propagation&rft.au=Yu%20Yeh&rft.date=1967-09&rft.volume=15&rft.issue=5&rft.spage=634&rft.epage=639&rft.pages=634-639&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.1967.1139029&rft_dat=%3Ccrossref_RIE%3E10_1109_TAP_1967_1139029%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1139029&rfr_iscdi=true