Theory of conical equiangular-spiral antennas--Part I--Numerical technique
The integral equation method is applied to find the rigorous solutions of the current distributions on conical, eqaiangular-spiral antennas of arbitrary spiral parameter and cone angle. With a transcendental interpolation function, antennas up to 10\lambda in armlength can be calculated. Comparisons...
Gespeichert in:
Veröffentlicht in: | I.R.E. transactions on antennas and propagation 1967-09, Vol.15 (5), p.634-639 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 639 |
---|---|
container_issue | 5 |
container_start_page | 634 |
container_title | I.R.E. transactions on antennas and propagation |
container_volume | 15 |
creator | Yu Yeh Mei, K. |
description | The integral equation method is applied to find the rigorous solutions of the current distributions on conical, eqaiangular-spiral antennas of arbitrary spiral parameter and cone angle. With a transcendental interpolation function, antennas up to 10\lambda in armlength can be calculated. Comparisons of calculated and experimental results are presented, indicating excellent agreement. The computer programming resulting from this investigation thus replaces painstaking procedures of design, experimentation, and optimization of equiangular-spiral antennas by a few minutes of computer calculations. |
doi_str_mv | 10.1109/TAP.1967.1139029 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1139029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1139029</ieee_id><sourcerecordid>10_1109_TAP_1967_1139029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-c6282d4c6a9bec76f8595971b4837b37678dffa25b63c26ef90b9a341a11a6d63</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EEqFwR-KSF3CxHcexj1XFT1EFPQSJW7Rx1jQoTVo7OfTtSWkkTqOZndnDR8g9Z3POmXnMF5s5NyobXWKYMBck4mmqqRCCX5KIMa6pEerrmtyE8DNaqaWMyFu-xc4f487FtmtrC02Mh6GG9ntowNOwr_0YQdtj20KgdAO-j1eUvg879H_1Hu22rQ8D3pIrB03Au0ln5PP5KV--0vXHy2q5WFMrpOypVUKLSloFpkSbKadTk5qMl1InWZlkKtOVcyDSUiVWKHSGlQYSyYFzUJVKZoSd_1rfheDRFXtf78AfC86KE4tiZFGcWBQTi3HycJ7UiPhfn66_3-ta3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theory of conical equiangular-spiral antennas--Part I--Numerical technique</title><source>IEEE Electronic Library (IEL)</source><creator>Yu Yeh ; Mei, K.</creator><creatorcontrib>Yu Yeh ; Mei, K.</creatorcontrib><description>The integral equation method is applied to find the rigorous solutions of the current distributions on conical, eqaiangular-spiral antennas of arbitrary spiral parameter and cone angle. With a transcendental interpolation function, antennas up to 10\lambda in armlength can be calculated. Comparisons of calculated and experimental results are presented, indicating excellent agreement. The computer programming resulting from this investigation thus replaces painstaking procedures of design, experimentation, and optimization of equiangular-spiral antennas by a few minutes of computer calculations.</description><identifier>ISSN: 0018-926X</identifier><identifier>ISSN: 0096-1973</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.1967.1139029</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Antenna measurements ; Antenna theory ; Current distribution ; Design optimization ; Dipole antennas ; Geometry ; Helical antennas ; Integral equations ; Spirals ; Wire</subject><ispartof>I.R.E. transactions on antennas and propagation, 1967-09, Vol.15 (5), p.634-639</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c244t-c6282d4c6a9bec76f8595971b4837b37678dffa25b63c26ef90b9a341a11a6d63</citedby><cites>FETCH-LOGICAL-c244t-c6282d4c6a9bec76f8595971b4837b37678dffa25b63c26ef90b9a341a11a6d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1139029$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1139029$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu Yeh</creatorcontrib><creatorcontrib>Mei, K.</creatorcontrib><title>Theory of conical equiangular-spiral antennas--Part I--Numerical technique</title><title>I.R.E. transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The integral equation method is applied to find the rigorous solutions of the current distributions on conical, eqaiangular-spiral antennas of arbitrary spiral parameter and cone angle. With a transcendental interpolation function, antennas up to 10\lambda in armlength can be calculated. Comparisons of calculated and experimental results are presented, indicating excellent agreement. The computer programming resulting from this investigation thus replaces painstaking procedures of design, experimentation, and optimization of equiangular-spiral antennas by a few minutes of computer calculations.</description><subject>Antenna measurements</subject><subject>Antenna theory</subject><subject>Current distribution</subject><subject>Design optimization</subject><subject>Dipole antennas</subject><subject>Geometry</subject><subject>Helical antennas</subject><subject>Integral equations</subject><subject>Spirals</subject><subject>Wire</subject><issn>0018-926X</issn><issn>0096-1973</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EEqFwR-KSF3CxHcexj1XFT1EFPQSJW7Rx1jQoTVo7OfTtSWkkTqOZndnDR8g9Z3POmXnMF5s5NyobXWKYMBck4mmqqRCCX5KIMa6pEerrmtyE8DNaqaWMyFu-xc4f487FtmtrC02Mh6GG9ntowNOwr_0YQdtj20KgdAO-j1eUvg879H_1Hu22rQ8D3pIrB03Au0ln5PP5KV--0vXHy2q5WFMrpOypVUKLSloFpkSbKadTk5qMl1InWZlkKtOVcyDSUiVWKHSGlQYSyYFzUJVKZoSd_1rfheDRFXtf78AfC86KE4tiZFGcWBQTi3HycJ7UiPhfn66_3-ta3w</recordid><startdate>196709</startdate><enddate>196709</enddate><creator>Yu Yeh</creator><creator>Mei, K.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>196709</creationdate><title>Theory of conical equiangular-spiral antennas--Part I--Numerical technique</title><author>Yu Yeh ; Mei, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-c6282d4c6a9bec76f8595971b4837b37678dffa25b63c26ef90b9a341a11a6d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><topic>Antenna measurements</topic><topic>Antenna theory</topic><topic>Current distribution</topic><topic>Design optimization</topic><topic>Dipole antennas</topic><topic>Geometry</topic><topic>Helical antennas</topic><topic>Integral equations</topic><topic>Spirals</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu Yeh</creatorcontrib><creatorcontrib>Mei, K.</creatorcontrib><collection>CrossRef</collection><jtitle>I.R.E. transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu Yeh</au><au>Mei, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of conical equiangular-spiral antennas--Part I--Numerical technique</atitle><jtitle>I.R.E. transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>1967-09</date><risdate>1967</risdate><volume>15</volume><issue>5</issue><spage>634</spage><epage>639</epage><pages>634-639</pages><issn>0018-926X</issn><issn>0096-1973</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The integral equation method is applied to find the rigorous solutions of the current distributions on conical, eqaiangular-spiral antennas of arbitrary spiral parameter and cone angle. With a transcendental interpolation function, antennas up to 10\lambda in armlength can be calculated. Comparisons of calculated and experimental results are presented, indicating excellent agreement. The computer programming resulting from this investigation thus replaces painstaking procedures of design, experimentation, and optimization of equiangular-spiral antennas by a few minutes of computer calculations.</abstract><pub>IEEE</pub><doi>10.1109/TAP.1967.1139029</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | I.R.E. transactions on antennas and propagation, 1967-09, Vol.15 (5), p.634-639 |
issn | 0018-926X 0096-1973 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_1139029 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna measurements Antenna theory Current distribution Design optimization Dipole antennas Geometry Helical antennas Integral equations Spirals Wire |
title | Theory of conical equiangular-spiral antennas--Part I--Numerical technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20conical%20equiangular-spiral%20antennas--Part%20I--Numerical%20technique&rft.jtitle=I.R.E.%20transactions%20on%20antennas%20and%20propagation&rft.au=Yu%20Yeh&rft.date=1967-09&rft.volume=15&rft.issue=5&rft.spage=634&rft.epage=639&rft.pages=634-639&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.1967.1139029&rft_dat=%3Ccrossref_RIE%3E10_1109_TAP_1967_1139029%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1139029&rfr_iscdi=true |