Z-transform theory for linear array analysis

The author wishes to amplify Christiansen's recent communication [P.L. Christiansen, "On the closed form of the array factor for linear arrays," IEEE Trans. on Antennas and Prop. (Commun.), vol. AP-11, p. 198, March, 1963.] on the use of Z-transform theory for obtaining a closed form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:I.R.E. transactions on antennas and propagation 1963-09, Vol.11 (5), p.593-593
1. Verfasser: Cheng, David K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 593
container_issue 5
container_start_page 593
container_title I.R.E. transactions on antennas and propagation
container_volume 11
creator Cheng, David K.
description The author wishes to amplify Christiansen's recent communication [P.L. Christiansen, "On the closed form of the array factor for linear arrays," IEEE Trans. on Antennas and Prop. (Commun.), vol. AP-11, p. 198, March, 1963.] on the use of Z-transform theory for obtaining a closed form for the array polynomial of linear antenna arrays. He is convinced that his proposed approach provides a concise and convenient way for linear array analysis, and his new results will be useful. In his communication Christiansen stressed that the Z-transform approach does not require that the envelope function of the current distribution be periodic, nor is the approach limited to envelope functions with a linear phase relation. That a unit gate function could be used in cases where the amplitude envelope is not representable by a periodic function was pointed out previously by the present author [1960]. Christiansen gave the array factor of a very complicated amplitude distribution function without showing the intermediate steps. In an effort to clarify the situation, two examples are provided that may prove to be helpful to interested readers.
doi_str_mv 10.1109/TAP.1963.1138086
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1138086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1138086</ieee_id><sourcerecordid>10_1109_TAP_1963_1138086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c178t-731dca2ccad1a590fa3077ca440033cdea981fcf944c78011788388ee811b8dd3</originalsourceid><addsrcrecordid>eNpFj8FKxDAQhoMoWFfvgpc-gF1nmrSdHJdFV2FBDyuIlzCmCVa6XUl66dubZQueZn7--QY-IW4RloigH3artyXqWqYkCag-ExlWFRVlWeK5yACQCl3WH5fiKsafFBUplYn7z2IMPER_CPt8_HaHMOVpz_tucBxyDoGnnAfup9jFa3HhuY_uZp4L8f70uFs_F9vXzct6tS0sNjQWjcTWcmktt8iVBs8SmsayUgBS2taxJvTWa6VsQ4AJIknkHCF-UdvKhYDTXxsOMQbnzW_o9hwmg2COtibZmqOtmW0TcndCOufc__nc_gE28FBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Z-transform theory for linear array analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, David K.</creator><creatorcontrib>Cheng, David K.</creatorcontrib><description>The author wishes to amplify Christiansen's recent communication [P.L. Christiansen, "On the closed form of the array factor for linear arrays," IEEE Trans. on Antennas and Prop. (Commun.), vol. AP-11, p. 198, March, 1963.] on the use of Z-transform theory for obtaining a closed form for the array polynomial of linear antenna arrays. He is convinced that his proposed approach provides a concise and convenient way for linear array analysis, and his new results will be useful. In his communication Christiansen stressed that the Z-transform approach does not require that the envelope function of the current distribution be periodic, nor is the approach limited to envelope functions with a linear phase relation. That a unit gate function could be used in cases where the amplitude envelope is not representable by a periodic function was pointed out previously by the present author [1960]. Christiansen gave the array factor of a very complicated amplitude distribution function without showing the intermediate steps. In an effort to clarify the situation, two examples are provided that may prove to be helpful to interested readers.</description><identifier>ISSN: 0018-926X</identifier><identifier>ISSN: 0096-1973</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.1963.1138086</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electromagnetic fields ; Phased arrays ; Transforms</subject><ispartof>I.R.E. transactions on antennas and propagation, 1963-09, Vol.11 (5), p.593-593</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c178t-731dca2ccad1a590fa3077ca440033cdea981fcf944c78011788388ee811b8dd3</citedby><cites>FETCH-LOGICAL-c178t-731dca2ccad1a590fa3077ca440033cdea981fcf944c78011788388ee811b8dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1138086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1138086$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, David K.</creatorcontrib><title>Z-transform theory for linear array analysis</title><title>I.R.E. transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The author wishes to amplify Christiansen's recent communication [P.L. Christiansen, "On the closed form of the array factor for linear arrays," IEEE Trans. on Antennas and Prop. (Commun.), vol. AP-11, p. 198, March, 1963.] on the use of Z-transform theory for obtaining a closed form for the array polynomial of linear antenna arrays. He is convinced that his proposed approach provides a concise and convenient way for linear array analysis, and his new results will be useful. In his communication Christiansen stressed that the Z-transform approach does not require that the envelope function of the current distribution be periodic, nor is the approach limited to envelope functions with a linear phase relation. That a unit gate function could be used in cases where the amplitude envelope is not representable by a periodic function was pointed out previously by the present author [1960]. Christiansen gave the array factor of a very complicated amplitude distribution function without showing the intermediate steps. In an effort to clarify the situation, two examples are provided that may prove to be helpful to interested readers.</description><subject>Electromagnetic fields</subject><subject>Phased arrays</subject><subject>Transforms</subject><issn>0018-926X</issn><issn>0096-1973</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1963</creationdate><recordtype>article</recordtype><recordid>eNpFj8FKxDAQhoMoWFfvgpc-gF1nmrSdHJdFV2FBDyuIlzCmCVa6XUl66dubZQueZn7--QY-IW4RloigH3artyXqWqYkCag-ExlWFRVlWeK5yACQCl3WH5fiKsafFBUplYn7z2IMPER_CPt8_HaHMOVpz_tucBxyDoGnnAfup9jFa3HhuY_uZp4L8f70uFs_F9vXzct6tS0sNjQWjcTWcmktt8iVBs8SmsayUgBS2taxJvTWa6VsQ4AJIknkHCF-UdvKhYDTXxsOMQbnzW_o9hwmg2COtibZmqOtmW0TcndCOufc__nc_gE28FBY</recordid><startdate>196309</startdate><enddate>196309</enddate><creator>Cheng, David K.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>196309</creationdate><title>Z-transform theory for linear array analysis</title><author>Cheng, David K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c178t-731dca2ccad1a590fa3077ca440033cdea981fcf944c78011788388ee811b8dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1963</creationdate><topic>Electromagnetic fields</topic><topic>Phased arrays</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, David K.</creatorcontrib><collection>CrossRef</collection><jtitle>I.R.E. transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, David K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Z-transform theory for linear array analysis</atitle><jtitle>I.R.E. transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>1963-09</date><risdate>1963</risdate><volume>11</volume><issue>5</issue><spage>593</spage><epage>593</epage><pages>593-593</pages><issn>0018-926X</issn><issn>0096-1973</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The author wishes to amplify Christiansen's recent communication [P.L. Christiansen, "On the closed form of the array factor for linear arrays," IEEE Trans. on Antennas and Prop. (Commun.), vol. AP-11, p. 198, March, 1963.] on the use of Z-transform theory for obtaining a closed form for the array polynomial of linear antenna arrays. He is convinced that his proposed approach provides a concise and convenient way for linear array analysis, and his new results will be useful. In his communication Christiansen stressed that the Z-transform approach does not require that the envelope function of the current distribution be periodic, nor is the approach limited to envelope functions with a linear phase relation. That a unit gate function could be used in cases where the amplitude envelope is not representable by a periodic function was pointed out previously by the present author [1960]. Christiansen gave the array factor of a very complicated amplitude distribution function without showing the intermediate steps. In an effort to clarify the situation, two examples are provided that may prove to be helpful to interested readers.</abstract><pub>IEEE</pub><doi>10.1109/TAP.1963.1138086</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof I.R.E. transactions on antennas and propagation, 1963-09, Vol.11 (5), p.593-593
issn 0018-926X
0096-1973
1558-2221
language eng
recordid cdi_ieee_primary_1138086
source IEEE Electronic Library (IEL)
subjects Electromagnetic fields
Phased arrays
Transforms
title Z-transform theory for linear array analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Z-transform%20theory%20for%20linear%20array%20analysis&rft.jtitle=I.R.E.%20transactions%20on%20antennas%20and%20propagation&rft.au=Cheng,%20David%20K.&rft.date=1963-09&rft.volume=11&rft.issue=5&rft.spage=593&rft.epage=593&rft.pages=593-593&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.1963.1138086&rft_dat=%3Ccrossref_RIE%3E10_1109_TAP_1963_1138086%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1138086&rfr_iscdi=true