Z-transform theory for linear array analysis
The author wishes to amplify Christiansen's recent communication [P.L. Christiansen, "On the closed form of the array factor for linear arrays," IEEE Trans. on Antennas and Prop. (Commun.), vol. AP-11, p. 198, March, 1963.] on the use of Z-transform theory for obtaining a closed form...
Gespeichert in:
Veröffentlicht in: | I.R.E. transactions on antennas and propagation 1963-09, Vol.11 (5), p.593-593 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 593 |
---|---|
container_issue | 5 |
container_start_page | 593 |
container_title | I.R.E. transactions on antennas and propagation |
container_volume | 11 |
creator | Cheng, David K. |
description | The author wishes to amplify Christiansen's recent communication [P.L. Christiansen, "On the closed form of the array factor for linear arrays," IEEE Trans. on Antennas and Prop. (Commun.), vol. AP-11, p. 198, March, 1963.] on the use of Z-transform theory for obtaining a closed form for the array polynomial of linear antenna arrays. He is convinced that his proposed approach provides a concise and convenient way for linear array analysis, and his new results will be useful. In his communication Christiansen stressed that the Z-transform approach does not require that the envelope function of the current distribution be periodic, nor is the approach limited to envelope functions with a linear phase relation. That a unit gate function could be used in cases where the amplitude envelope is not representable by a periodic function was pointed out previously by the present author [1960]. Christiansen gave the array factor of a very complicated amplitude distribution function without showing the intermediate steps. In an effort to clarify the situation, two examples are provided that may prove to be helpful to interested readers. |
doi_str_mv | 10.1109/TAP.1963.1138086 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1138086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1138086</ieee_id><sourcerecordid>10_1109_TAP_1963_1138086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c178t-731dca2ccad1a590fa3077ca440033cdea981fcf944c78011788388ee811b8dd3</originalsourceid><addsrcrecordid>eNpFj8FKxDAQhoMoWFfvgpc-gF1nmrSdHJdFV2FBDyuIlzCmCVa6XUl66dubZQueZn7--QY-IW4RloigH3artyXqWqYkCag-ExlWFRVlWeK5yACQCl3WH5fiKsafFBUplYn7z2IMPER_CPt8_HaHMOVpz_tucBxyDoGnnAfup9jFa3HhuY_uZp4L8f70uFs_F9vXzct6tS0sNjQWjcTWcmktt8iVBs8SmsayUgBS2taxJvTWa6VsQ4AJIknkHCF-UdvKhYDTXxsOMQbnzW_o9hwmg2COtibZmqOtmW0TcndCOufc__nc_gE28FBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Z-transform theory for linear array analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, David K.</creator><creatorcontrib>Cheng, David K.</creatorcontrib><description>The author wishes to amplify Christiansen's recent communication [P.L. Christiansen, "On the closed form of the array factor for linear arrays," IEEE Trans. on Antennas and Prop. (Commun.), vol. AP-11, p. 198, March, 1963.] on the use of Z-transform theory for obtaining a closed form for the array polynomial of linear antenna arrays. He is convinced that his proposed approach provides a concise and convenient way for linear array analysis, and his new results will be useful. In his communication Christiansen stressed that the Z-transform approach does not require that the envelope function of the current distribution be periodic, nor is the approach limited to envelope functions with a linear phase relation. That a unit gate function could be used in cases where the amplitude envelope is not representable by a periodic function was pointed out previously by the present author [1960]. Christiansen gave the array factor of a very complicated amplitude distribution function without showing the intermediate steps. In an effort to clarify the situation, two examples are provided that may prove to be helpful to interested readers.</description><identifier>ISSN: 0018-926X</identifier><identifier>ISSN: 0096-1973</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.1963.1138086</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electromagnetic fields ; Phased arrays ; Transforms</subject><ispartof>I.R.E. transactions on antennas and propagation, 1963-09, Vol.11 (5), p.593-593</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c178t-731dca2ccad1a590fa3077ca440033cdea981fcf944c78011788388ee811b8dd3</citedby><cites>FETCH-LOGICAL-c178t-731dca2ccad1a590fa3077ca440033cdea981fcf944c78011788388ee811b8dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1138086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1138086$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, David K.</creatorcontrib><title>Z-transform theory for linear array analysis</title><title>I.R.E. transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The author wishes to amplify Christiansen's recent communication [P.L. Christiansen, "On the closed form of the array factor for linear arrays," IEEE Trans. on Antennas and Prop. (Commun.), vol. AP-11, p. 198, March, 1963.] on the use of Z-transform theory for obtaining a closed form for the array polynomial of linear antenna arrays. He is convinced that his proposed approach provides a concise and convenient way for linear array analysis, and his new results will be useful. In his communication Christiansen stressed that the Z-transform approach does not require that the envelope function of the current distribution be periodic, nor is the approach limited to envelope functions with a linear phase relation. That a unit gate function could be used in cases where the amplitude envelope is not representable by a periodic function was pointed out previously by the present author [1960]. Christiansen gave the array factor of a very complicated amplitude distribution function without showing the intermediate steps. In an effort to clarify the situation, two examples are provided that may prove to be helpful to interested readers.</description><subject>Electromagnetic fields</subject><subject>Phased arrays</subject><subject>Transforms</subject><issn>0018-926X</issn><issn>0096-1973</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1963</creationdate><recordtype>article</recordtype><recordid>eNpFj8FKxDAQhoMoWFfvgpc-gF1nmrSdHJdFV2FBDyuIlzCmCVa6XUl66dubZQueZn7--QY-IW4RloigH3artyXqWqYkCag-ExlWFRVlWeK5yACQCl3WH5fiKsafFBUplYn7z2IMPER_CPt8_HaHMOVpz_tucBxyDoGnnAfup9jFa3HhuY_uZp4L8f70uFs_F9vXzct6tS0sNjQWjcTWcmktt8iVBs8SmsayUgBS2taxJvTWa6VsQ4AJIknkHCF-UdvKhYDTXxsOMQbnzW_o9hwmg2COtibZmqOtmW0TcndCOufc__nc_gE28FBY</recordid><startdate>196309</startdate><enddate>196309</enddate><creator>Cheng, David K.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>196309</creationdate><title>Z-transform theory for linear array analysis</title><author>Cheng, David K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c178t-731dca2ccad1a590fa3077ca440033cdea981fcf944c78011788388ee811b8dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1963</creationdate><topic>Electromagnetic fields</topic><topic>Phased arrays</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, David K.</creatorcontrib><collection>CrossRef</collection><jtitle>I.R.E. transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, David K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Z-transform theory for linear array analysis</atitle><jtitle>I.R.E. transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>1963-09</date><risdate>1963</risdate><volume>11</volume><issue>5</issue><spage>593</spage><epage>593</epage><pages>593-593</pages><issn>0018-926X</issn><issn>0096-1973</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The author wishes to amplify Christiansen's recent communication [P.L. Christiansen, "On the closed form of the array factor for linear arrays," IEEE Trans. on Antennas and Prop. (Commun.), vol. AP-11, p. 198, March, 1963.] on the use of Z-transform theory for obtaining a closed form for the array polynomial of linear antenna arrays. He is convinced that his proposed approach provides a concise and convenient way for linear array analysis, and his new results will be useful. In his communication Christiansen stressed that the Z-transform approach does not require that the envelope function of the current distribution be periodic, nor is the approach limited to envelope functions with a linear phase relation. That a unit gate function could be used in cases where the amplitude envelope is not representable by a periodic function was pointed out previously by the present author [1960]. Christiansen gave the array factor of a very complicated amplitude distribution function without showing the intermediate steps. In an effort to clarify the situation, two examples are provided that may prove to be helpful to interested readers.</abstract><pub>IEEE</pub><doi>10.1109/TAP.1963.1138086</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | I.R.E. transactions on antennas and propagation, 1963-09, Vol.11 (5), p.593-593 |
issn | 0018-926X 0096-1973 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_1138086 |
source | IEEE Electronic Library (IEL) |
subjects | Electromagnetic fields Phased arrays Transforms |
title | Z-transform theory for linear array analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Z-transform%20theory%20for%20linear%20array%20analysis&rft.jtitle=I.R.E.%20transactions%20on%20antennas%20and%20propagation&rft.au=Cheng,%20David%20K.&rft.date=1963-09&rft.volume=11&rft.issue=5&rft.spage=593&rft.epage=593&rft.pages=593-593&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.1963.1138086&rft_dat=%3Ccrossref_RIE%3E10_1109_TAP_1963_1138086%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1138086&rfr_iscdi=true |