Waveguides Containing Moving Dispersive Media

Perturbation formulas are derived for the changes in the dispersion curves and phase velocity for the modes in an arbitrary composite waveguide structure containing dispersive media in relative motion. The formulas are also valid when the media are fluids with arbitrary velocity distributions. It is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 1967-11, Vol.15 (11), p.636-642
Hauptverfasser: Gruenberg, H., Daly, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 642
container_issue 11
container_start_page 636
container_title IEEE transactions on microwave theory and techniques
container_volume 15
creator Gruenberg, H.
Daly, P.
description Perturbation formulas are derived for the changes in the dispersion curves and phase velocity for the modes in an arbitrary composite waveguide structure containing dispersive media in relative motion. The formulas are also valid when the media are fluids with arbitrary velocity distributions. It is shown that the relativistic transformation laws for the frequency and wave vector of uniform plane waves are also valid for waveguide modes provided that all moving media that make up the guide move with the same velocity. There are also difficulties when the moving media are dispersive. In general, one most therefore obtain the dispersion relation directly from the field equations or from the perturbation formulas. An example involving a simple surface wave along the interface of a moving plasma and a dielectric is worked out by both methods. As an interesting side result, it is found that plane waves in an unbounded isotropic plasma have phase velocities independent of the motion of the plasma.
doi_str_mv 10.1109/TMTT.1967.1126553
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1126553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1126553</ieee_id><sourcerecordid>29093838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-6e37ee5e66d8d1bc84c0b27ccce1e5d552990cd87dccf587a169e9c4dee759ba3</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxS0EEqHwARBLJjYXO47_jahQQGrFEsRoufa1MkqTECeR-PYkaiRGdMPTu3vvhh9Ct5QsKSX6odgWxZJqIUebCc7ZGUoo5xKPK3KOEkKowjpX5BJdxfg12pwTlSD8aQc49MFDTFd11dlQheqQbuthkqcQG2hjGCDdgg_2Gl3sbRnhZtYF-lg_F6tXvHl_eVs9brBjmeywACYBOAjhlac7p3JHdpl0zgEF7jnPtCbOK-md23MlLRUatMs9gOR6Z9kC3Z_-Nm393UPszDFEB2VpK6j7aDJNNFPj_BtUQjHGpyA9BV1bx9jC3jRtONr2x1BiJoJmImgmgmYmOHbuTp0AAH_5-foLG9ls-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28683358</pqid></control><display><type>article</type><title>Waveguides Containing Moving Dispersive Media</title><source>IEEE Electronic Library (IEL)</source><creator>Gruenberg, H. ; Daly, P.</creator><creatorcontrib>Gruenberg, H. ; Daly, P.</creatorcontrib><description>Perturbation formulas are derived for the changes in the dispersion curves and phase velocity for the modes in an arbitrary composite waveguide structure containing dispersive media in relative motion. The formulas are also valid when the media are fluids with arbitrary velocity distributions. It is shown that the relativistic transformation laws for the frequency and wave vector of uniform plane waves are also valid for waveguide modes provided that all moving media that make up the guide move with the same velocity. There are also difficulties when the moving media are dispersive. In general, one most therefore obtain the dispersion relation directly from the field equations or from the perturbation formulas. An example involving a simple surface wave along the interface of a moving plasma and a dielectric is worked out by both methods. As an interesting side result, it is found that plane waves in an unbounded isotropic plasma have phase velocities independent of the motion of the plasma.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.1967.1126553</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dielectrics ; Differential equations ; Dispersion ; Electromagnetic waveguides ; Frequency measurement ; Maxwell equations ; Plasma waves ; Propagation constant ; Surface waves</subject><ispartof>IEEE transactions on microwave theory and techniques, 1967-11, Vol.15 (11), p.636-642</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-6e37ee5e66d8d1bc84c0b27ccce1e5d552990cd87dccf587a169e9c4dee759ba3</citedby><cites>FETCH-LOGICAL-c327t-6e37ee5e66d8d1bc84c0b27ccce1e5d552990cd87dccf587a169e9c4dee759ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1126553$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1126553$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gruenberg, H.</creatorcontrib><creatorcontrib>Daly, P.</creatorcontrib><title>Waveguides Containing Moving Dispersive Media</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Perturbation formulas are derived for the changes in the dispersion curves and phase velocity for the modes in an arbitrary composite waveguide structure containing dispersive media in relative motion. The formulas are also valid when the media are fluids with arbitrary velocity distributions. It is shown that the relativistic transformation laws for the frequency and wave vector of uniform plane waves are also valid for waveguide modes provided that all moving media that make up the guide move with the same velocity. There are also difficulties when the moving media are dispersive. In general, one most therefore obtain the dispersion relation directly from the field equations or from the perturbation formulas. An example involving a simple surface wave along the interface of a moving plasma and a dielectric is worked out by both methods. As an interesting side result, it is found that plane waves in an unbounded isotropic plasma have phase velocities independent of the motion of the plasma.</description><subject>Dielectrics</subject><subject>Differential equations</subject><subject>Dispersion</subject><subject>Electromagnetic waveguides</subject><subject>Frequency measurement</subject><subject>Maxwell equations</subject><subject>Plasma waves</subject><subject>Propagation constant</subject><subject>Surface waves</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxS0EEqHwARBLJjYXO47_jahQQGrFEsRoufa1MkqTECeR-PYkaiRGdMPTu3vvhh9Ct5QsKSX6odgWxZJqIUebCc7ZGUoo5xKPK3KOEkKowjpX5BJdxfg12pwTlSD8aQc49MFDTFd11dlQheqQbuthkqcQG2hjGCDdgg_2Gl3sbRnhZtYF-lg_F6tXvHl_eVs9brBjmeywACYBOAjhlac7p3JHdpl0zgEF7jnPtCbOK-md23MlLRUatMs9gOR6Z9kC3Z_-Nm393UPszDFEB2VpK6j7aDJNNFPj_BtUQjHGpyA9BV1bx9jC3jRtONr2x1BiJoJmImgmgmYmOHbuTp0AAH_5-foLG9ls-Q</recordid><startdate>19671101</startdate><enddate>19671101</enddate><creator>Gruenberg, H.</creator><creator>Daly, P.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope></search><sort><creationdate>19671101</creationdate><title>Waveguides Containing Moving Dispersive Media</title><author>Gruenberg, H. ; Daly, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-6e37ee5e66d8d1bc84c0b27ccce1e5d552990cd87dccf587a169e9c4dee759ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><topic>Dielectrics</topic><topic>Differential equations</topic><topic>Dispersion</topic><topic>Electromagnetic waveguides</topic><topic>Frequency measurement</topic><topic>Maxwell equations</topic><topic>Plasma waves</topic><topic>Propagation constant</topic><topic>Surface waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruenberg, H.</creatorcontrib><creatorcontrib>Daly, P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gruenberg, H.</au><au>Daly, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waveguides Containing Moving Dispersive Media</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>1967-11-01</date><risdate>1967</risdate><volume>15</volume><issue>11</issue><spage>636</spage><epage>642</epage><pages>636-642</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Perturbation formulas are derived for the changes in the dispersion curves and phase velocity for the modes in an arbitrary composite waveguide structure containing dispersive media in relative motion. The formulas are also valid when the media are fluids with arbitrary velocity distributions. It is shown that the relativistic transformation laws for the frequency and wave vector of uniform plane waves are also valid for waveguide modes provided that all moving media that make up the guide move with the same velocity. There are also difficulties when the moving media are dispersive. In general, one most therefore obtain the dispersion relation directly from the field equations or from the perturbation formulas. An example involving a simple surface wave along the interface of a moving plasma and a dielectric is worked out by both methods. As an interesting side result, it is found that plane waves in an unbounded isotropic plasma have phase velocities independent of the motion of the plasma.</abstract><pub>IEEE</pub><doi>10.1109/TMTT.1967.1126553</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 1967-11, Vol.15 (11), p.636-642
issn 0018-9480
1557-9670
language eng
recordid cdi_ieee_primary_1126553
source IEEE Electronic Library (IEL)
subjects Dielectrics
Differential equations
Dispersion
Electromagnetic waveguides
Frequency measurement
Maxwell equations
Plasma waves
Propagation constant
Surface waves
title Waveguides Containing Moving Dispersive Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waveguides%20Containing%20Moving%20Dispersive%20Media&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Gruenberg,%20H.&rft.date=1967-11-01&rft.volume=15&rft.issue=11&rft.spage=636&rft.epage=642&rft.pages=636-642&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.1967.1126553&rft_dat=%3Cproquest_RIE%3E29093838%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28683358&rft_id=info:pmid/&rft_ieee_id=1126553&rfr_iscdi=true